
График функции f(x)=x²+bx+c пересекает ось абсцисс в точках А и С, а ось ординат в точке В, и
известно, что А (1,0). Найдите угол СВО, где О — начало координат.

Ответы на вопрос

Ответ:
Объяснение:
Для того чтобы найти угол СВО, где О - начало координат, вам понадобятся координаты точек C и B.
Мы уже знаем, что точка A имеет координаты (1, 0). Также, нам известно, что график функции пересекает ось ординат в точке B. Ось ординат имеет уравнение x = 0, поэтому чтобы найти координаты точки B, мы можем подставить x = 0 в уравнение функции f(x) = x² + bx + c:
f(0) = 0² + b(0) + c
f(0) = c
Таким образом, координаты точки B равны (0, c).
Теперь, чтобы найти координаты точки C, мы используем информацию о том, что график функции пересекает ось абсцисс в точке C. Ось абсцисс имеет уравнение y = 0, поэтому мы можем решить уравнение f(x) = x² + bx + c = 0:
x² + bx + c = 0
Мы знаем, что у нас есть корень x = 1 (точка A), поэтому у нас должен быть ещё один корень при x = k (точка C). Мы можем использовать формулу квадратного уравнения для нахождения k:
x = (-b ± √(b² - 4ac)) / (2a)
В нашем случае a = 1, b = b и c = c. Таким образом, мы получаем:
1 = (-b ± √(b² - 4c)) / 2
Перегруппируем уравнение:
2 = -b ± √(b² - 4c)
Теперь мы можем решить это уравнение относительно b:
2 ± √(b² - 4c) = -b
√(b² - 4c) = -b - 2
Теперь возведем обе стороны уравнения в квадрат:
b² - 4c = (-b - 2)²
b² - 4c = b² + 4b + 4
Теперь выразим c:
c = (4b + 4) / 4
c = b + 1
Таким образом, координаты точки C равны (k, 0), где k - корень уравнения x² + bx + b + 1 = 0.
Теперь у нас есть координаты точек B и C, и мы можем найти угол СВО, используя тригонометрию. Угол СВО можно найти, используя тангенс этого угла:
tg(∠СВО) = (BC) / (BO)
где BC - расстояние между точкой B и C, а BO - расстояние между точкой B и началом координат (точкой O).
BC равно разности x-координат точек B и C:
BC = |0 - k| = |k|
BO равно x-координате точки B:
BO = 0
Теперь мы можем найти тангенс угла СВО:
tg(∠СВО) = |k| / 0
Угол между BC и BO составляет 90 градусов, так как BO - это ось ординат, а BC - это ось абсцисс.
Таким образом, угол СВО равен 90 градусов.



График функции f(x) = x² + bx + c
Дано, что график функции f(x) = x² + bx + c пересекает ось абсцисс в точках A и C, а ось ординат в точке B. Также известно, что точка A имеет координаты (1, 0).
Для нахождения угла СВО, где O - начало координат, нам необходимо найти координаты точек B и C.
Нахождение координат точки B
Так как график функции пересекает ось ординат в точке B, то координата y точки B равна нулю. Подставим это условие в уравнение функции:
f(x) = x² + bx + c
Подставляем y = 0:
0 = x² + bx + c
Так как точка B лежит на оси ординат, то ее координата x равна нулю. Подставляем x = 0:
0 = 0² + 0b + c
Уравнение принимает вид:
0 = c
Таким образом, координата точки B равна (0, 0).
Нахождение координат точки C
Так как график функции пересекает ось абсцисс в точке C, то координата y точки C равна нулю. Подставим это условие в уравнение функции:
f(x) = x² + bx + c
Подставляем y = 0:
0 = x² + bx + c
Так как точка C лежит на оси абсцисс, то ее координата y равна нулю. Подставляем y = 0:
0 = x² + bx + c
Также известно, что точка A имеет координаты (1, 0). Подставляем x = 1 и y = 0:
0 = 1² + b(1) + c
0 = 1 + b + c
Уравнение принимает вид:
b + c = -1
Таким образом, у нас есть система уравнений:
0 = x² + bx + c b + c = -1
Решим эту систему уравнений для нахождения координат точки C.
Решение системы уравнений
Используем метод подстановки. Решим второе уравнение относительно b:
b = -1 - c
Подставим это значение в первое уравнение:
0 = x² + (-1 - c)x + c
0 = x² - x - cx + c
0 = x(x - 1) - c(x - 1)
0 = (x - 1)(x - c)
Так как точка A имеет координаты (1, 0), то x = 1 является одним из корней уравнения. Подставим x = 1:
0 = (1 - 1)(1 - c)
0 = 0(1 - c)
Таким образом, у нас есть два возможных случая:
1. x - 1 = 0, что означает, что x = 1 и c может быть любым числом. 2. 1 - c = 0, что означает, что c = 1 и x может быть любым числом.
Таким образом, точка C может иметь координаты (1, c) или (x, 1), где c и x - произвольные числа.
Нахождение угла СВО
Для нахождения угла СВО, где O - начало координат, нам необходимо найти координаты точек B и C.
Мы уже выяснили, что координаты точки B равны (0, 0).
Координаты точки C могут быть (1, c) или (x, 1), где c и x - произвольные числа.
Таким образом, угол СВО может быть определен как угол между прямыми OB и OC.
Обратите внимание: Так как точка C может иметь различные координаты, угол СВО может иметь различные значения в зависимости от выбора координат точки C.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili