
Выполните деление дробей: 63a^3b/c : 18a^2b


Ответы на вопрос

Ответ:
Объяснение:



Для выполнения деления дробей (63a^3b/c) ÷ (18a^2b+), мы можем упростить выражение, упрощая числитель и знаменатель, и затем выполнить деление.
Для начала, давайте разложим числитель и знаменатель на простые множители:
Числитель: 63a^3b Знаменатель: 18a^2b
Теперь мы можем упростить каждый из них:
Числитель: 63a^3b = 7 * 3 * 3 * a^3 * b Знаменатель: 18a^2b = 2 * 3 * 3 * a^2 * b
Теперь мы можем выразить их в виде произведения простых множителей.
Теперь давайте выполним деление:
(63a^3b) ÷ (18a^2b)
Сначала упростим числитель и знаменатель, выделяя общие множители:
Числитель: 7 * 3 * 3 * a^3 * b Знаменатель: 2 * 3 * 3 * a^2 * b
Теперь давайте сократим общие множители между числителем и знаменателем:
(7 * 3 * 3 * a^3 * b) ÷ (2 * 3 * 3 * a^2 * b)
Теперь можно сократить множители:
7/2 * (a^3/a^2) * (b/b)
Теперь у нас остается:
(7/2) * (a^(3-2)) * 1
7/2 * a * 1
Теперь просто умножим числа:
(7/2) * a
Таким образом, результат деления (63a^3b/c) ÷ (18a^2b) равен (7/2) * a.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili