Вопрос задан 27.10.2023 в 19:04. Предмет Алгебра. Спрашивает Юртаева Евгения.

Упростите выражение: 1) (2+sqrt(3))*(sqrt(3)-1) 2) (3-sqrt(5))*(5+sqrt(5)) желательно расписав

поэтапно
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Золотова Виктория.

(2+√3)(√3-1) =2√3+√3*√3- 2 -√3 = 2√3 +3 - 2-√3 =√3 +1

(3+√5)(5+√5) =3*5 + 5*√5+ 3*√5 +√5*√5 =15 +5√5 +3√5+5 = 8√5 +20

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для упрощения данного выражения сначала умножим два бинома в каждой из скобок. Давайте выполним это поэтапно.

1) Умножим биномы в первой скобке: (2 + √3)(√3 - 1)

Для этого мы можем использовать правило распределения (FOIL - первый, внутренний, внешний, последний): 2 * √3 + 2 * (-1) + √3 * √3 + √3 * (-1)

Теперь упростим это выражение: 2√3 - 2 + 3 - √3

2) Теперь умножим биномы во второй скобке: (3 - √5)(5 + √5)

Снова используем правило распределения (FOIL): 3 * 5 + 3 * √5 - √5 * 5 - √5 * √5

Упростим это выражение: 15 + 3√5 - 5√5 - 5

3) Теперь сложим результаты из первой и второй скобок: (2√3 - 2 + 3 - √3) + (15 + 3√5 - 5√5 - 5)

Теперь объединим подобные слагаемые: (2√3 - √3) + (3 - 2 + 15 - 5) + (3√5 - 5√5)

Упростим далее: √3 + 16 - 2√5

Итак, упрощенное выражение: √3 + 16 - 2√5

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос