Вопрос задан 23.10.2023 в 10:08. Предмет Алгебра. Спрашивает Климкин Никитос.

1) (a-5)^2-(a+5)^2 выполните действие 2) (a^3+b^2)^2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Yatskanich Tetyana.
1)  (a-5)^2-(a+5)^2 = (a-5-a-5)(a-5+a+5)=-10*2a=-20a
2)  (a^3+b^2)^2 = a^6+2a^3b^2+b^4
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
  1. Для выполнения выражения (a-5)^2 - (a+5)^2 раскроем скобки и выполним операции:

(a-5)^2 = a^2 - 10a + 25 (a+5)^2 = a^2 + 10a + 25

Теперь выразим разницу:

(a^2 - 10a + 25) - (a^2 + 10a + 25)

Раскроем скобки и выполним вычитание:

a^2 - 10a + 25 - a^2 - 10a - 25

Теперь сложим или вычтем соответствующие члены:

a^2 - a^2 = 0 -10a - (-10a) = -10a + 10a = 0 25 - 25 = 0

Итак, результатом выражения (a-5)^2 - (a+5)^2 является 0.

  1. Для выполнения выражения (a^3 + b^2)^2 возводим всё выражение в квадрат:

(a^3 + b^2)^2 = (a^3 + b^2) * (a^3 + b^2)

Раскроем скобки, используя формулу (A + B)^2 = A^2 + 2AB + B^2:

(a^3 + b^2) * (a^3 + b^2) = a^6 + 2a^3b^2 + b^4

Итак, результатом выражения (a^3 + b^2)^2 является a^6 + 2a^3b^2 + b^4.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос