
для функции найти первообразную график которой проходит через точку:а)y=6x^2-4x+1 A(1;-3),срочно
надо,пожалуйста

Ответы на вопрос

Первообразная функции — это такое выражение, производная которого равна исходной функции.
Подставим координаты точки A(1;-3) в первообразную функции
Искомая первообразная:



Для нахождения первообразной функции, график которой проходит через точку A(1, -3), вы можете использовать следующий процесс.
Пусть F(x) будет первообразной функцией для y = 6x^2 - 4x + 1. Мы ищем F(x) так, чтобы F'(x) = 6x^2 - 4x + 1.
Для этого найдем первообразные каждого члена по отдельности:
Первообразная для 6x^2: ∫(6x^2) dx = 2x^3 + C₁, где C₁ - произвольная постоянная.
Первообразная для -4x: ∫(-4x) dx = -2x^2 + C₂, где C₂ - еще одна произвольная постоянная.
Первообразная для 1: ∫1 dx = x + C₃, где C₃ - еще одна произвольная постоянная.
Теперь, чтобы найти F(x), сложим эти первообразные и добавим произвольные постоянные:
F(x) = 2x^3 - 2x^2 + x + C₁ + C₂ + C₃
Теперь у нас есть общая первообразная F(x) для функции y = 6x^2 - 4x + 1. Чтобы определить значения констант C₁, C₂ и C₃, используем информацию о том, что график проходит через точку A(1, -3). Подставим x = 1 и y = -3 в уравнение:
-3 = 2(1)^3 - 2(1)^2 + 1 + C₁ + C₂ + C₃
-3 = 2 - 2 + 1 + C₁ + C₂ + C₃
-3 = 1 + C₁ + C₂ + C₃
Теперь, чтобы найти C₁ + C₂ + C₃, вычитаем 1 с обеих сторон:
C₁ + C₂ + C₃ = -3 - 1
C₁ + C₂ + C₃ = -4
Теперь у нас есть значение C₁ + C₂ + C₃. Однако мы не можем найти конкретные значения C₁, C₂ и C₃ без дополнительной информации или уравнений. Если у вас есть дополнительные условия или уравнения, которые помогут определить значения этих констант, вы сможете найти точную первообразную функцию F(x).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili