
№1 S₅:b(n) b₃=18 q=3 №2 (an) d=4 s₅₀=5500 a1=? №3 (an) a₁=10 S₁₄=1050 d-?


Ответы на вопрос

b1•9=18
b1=18/9=2
b1•(q^5–1) 2•242
S5 = --------------- = ---------- = 242
q–1 2
2a1+49d
2. S50 =------------•50=(2a1+49•4)•25=
2
= (2a1+196)•25
(2a1+196)•25=5500 |:25
2a1+196=220
2a1=24
a1=12
2a1+13d
3. S14 = ------------ • 14 = (2a1+13d)•7 =
2
= (2•10+13d)•7 = (20+13d)•7
(20+13d)•7 = 1050 |:7
20+13d = 150
13d = 130
d = 10



It looks like you have a series of three related sequences, and you're looking to find certain values within each sequence. Let's break it down:
Sequence #1: S₅:b(n) b₃=18 q=3
- S₅ represents the sum of the first 5 terms of sequence b(n).
- b₃ = 18 indicates that the third term of sequence b(n) is 18.
- q = 3 indicates that the common difference between consecutive terms of sequence b(n) is 3.
To find the sum S₅ of the first 5 terms of sequence b(n), you can use the formula for the sum of an arithmetic series:
S₅ = (n/2)[2a₁ + (n-1)d]
where n is the number of terms, a₁ is the first term, and d is the common difference.
In this case, n = 5, a₁ = ? (unknown), and d = 3. We also know that b₃ = 18, so we can use this information to find a₁:
b₃ = a₁ + 2d 18 = a₁ + 2(3) 18 = a₁ + 6
Now, solve for a₁:
a₁ = 18 - 6 a₁ = 12
Now that we have a₁, we can find S₅:
S₅ = (5/2)[2(12) + (5-1)(3)] S₅ = (5/2)[24 + 4(3)] S₅ = (5/2)[24 + 12] S₅ = (5/2)[36] S₅ = 90
So, the sum of the first 5 terms of sequence b(n) is 90.
Sequence #2: (an) d=4 s₅₀=5500 a₁=?
- In this sequence, the common difference d is given as 4.
- s₅₀ = 5500 indicates that the 50th term of sequence an is 5500.
- You need to find a₁, the first term of the sequence.
You can use the formula for an arithmetic sequence to find a₁:
a₅₀ = a₁ + (50 - 1)d
Substitute the values:
5500 = a₁ + 49 * 4
Now, solve for a₁:
5500 = a₁ + 196
a₁ = 5500 - 196 a₁ = 5304
So, the first term of sequence (an) is 5304.
Sequence #3: (an) a₁=10 S₁₄=1050 d=?
- In this sequence, a₁ is given as 10.
- S₁₄ = 1050 represents the sum of the first 14 terms of sequence an.
- You need to find the common difference d.
You can use the formula for the sum of an arithmetic series to find d:
S₁₄ = (14/2)[2a₁ + (14-1)d]
Substitute the values:
1050 = (14/2)[2(10) + (14-1)d]
Now, solve for d:
1050 = (7)[20 + 13d]
Divide both sides by 7:
150 = 20 + 13d
Subtract 20 from both sides:
130 = 13d
Now, divide by 13 to find d:
d = 130 / 13 d = 10
So, the common difference in sequence (an) is 10.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili