Вопрос задан 07.10.2023 в 13:47. Предмет Алгебра. Спрашивает Черняков Леня.

Решите, пожалуйста, уравнение: x^2/18+(x+1)/12=x+2/6

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Харламов Иван.

_________________________________


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного уравнения, начнем с упрощения его выражения:

(x^2/18) + ((x+1)/12) = (x+2)/6

Для начала домножим все части уравнения на 18, чтобы избавиться от дробей:

18 * (x^2/18) + 18 * ((x+1)/12) = 18 * ((x+2)/6)

x^2 + 3(x+1) = 3(x+2)

Теперь раскроем скобки:

x^2 + 3x + 3 = 3x + 6

Теперь выразим x^2, вычитая 3x и 3 с обеих сторон уравнения:

x^2 = 3

Теперь извлечем квадратный корень с обеих сторон:

x = ±√3

Итак, у нас есть два решения для данного уравнения: x = √3 и x = -√3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос