Вопрос задан 02.10.2023 в 17:11. Предмет Алгебра. Спрашивает Гвоздь Кирилл.

Найдите два соседних целых числа между которыми находится значение данного квадратного корня ?

< корень из 10 < ?​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Маковийчук Владислав.

Ответ:

3<√10<4

Объяснение:

3^2=9, 4^2=16, (√10)^2=10

9<10<16

3<√10<4

0 0
Отвечает Кадочникова Софья.

Ответ:

\sqrt{9} < \sqrt{10} < \sqrt{16}

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти два соседних целых числа, между которыми находится квадратный корень из 10, мы можем округлить значение квадратного корня из 10 до ближайших целых чисел.

Квадратный корень из 10 приближенно равен 3.16 (корень из 9 равен 3, а корень из 16 равен 4). Теперь мы можем найти два целых числа, между которыми находится 3.16.

Ближайшие целые числа меньше и больше 3.16 - это 3 и 4. Таким образом, два соседних целых числа, между которыми находится квадратный корень из 10, это 3 и 4.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос