Вопрос задан 30.09.2023 в 22:18. Предмет Алгебра. Спрашивает Бархатов Вадим.

Упростите выражение и найдите его значение: sin(a+b)-2 cosasinß/2sinasinß+cos(a+b)'если а — b=

135°​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Letunovich Sava.

Объяснение:

\alpha -\beta =135^0\\\frac{sin(\alpha +\beta )-2*cos\alpha *sin\beta }{2*sin\alpha *sin\beta +cos(\alpha +\beta )} =\frac{sin(\alpha +\beta )-2*\frac{1}{2}*(sin(\alpha +\beta )-sim(\alpha -\beta )) }{2*\frac{1}{2}*(cos(\alpha -\beta )-cos(\alpha +\beta )) +cos(\alpha +\beta )}=\\=\frac{sin(\alpha +\beta )-sin(\alpha +\beta )+sin(\alpha -\beta )}{cos(\alpha -\beta) -cos(\alpha +\beta )+cos(\alpha +\beta )}=\frac{sin(\alpha -\beta )}{cos(\alpha -\beta )}=tg(\alpha -\beta )=tg135^0=-1.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для упрощения выражения, сначала подставим значение a - b = 135°:

sin(a + b) - 2 cos(a) sin(b/2) sin(a) sin(b) + cos(a + b)

Теперь упростим каждый из членов по отдельности:

  1. sin(a + b): sin(135°) = -√2/2

  2. cos(a): cos(135°) = -√2/2

  3. sin(b/2): sin(135°/2) = sin(67.5°) = √2 - √2/2

  4. sin(a): sin(135°) = -√2/2

  5. sin(b): sin(135°) = -√2/2

  6. cos(a + b): cos(135°) = -√2/2

Теперь подставим полученные значения обратно в исходное выражение и вычислим его:

(-√2/2) - 2 * (-√2/2) * (√2 - √2/2) * (-√2/2) * (-√2/2) + (-√2/2)

Теперь вычислим это выражение:

(-√2/2) + 2 * (-√2/2) * (√2 - √2/2) * (√2/2) * (√2/2) + (-√2/2)

(-√2/2) + 2 * (-√2/2) * (2/4 - 1/4) - (√2/2)

(-√2/2) + 2 * (-√2/2) * (1/2) - (√2/2)

(-√2/2) - (√2/2) - (√2/2)

-√2

Итак, упрощенное значение данного выражения при условии a - b = 135° равно -√2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос