Вопрос задан 27.09.2023 в 07:38. Предмет Алгебра. Спрашивает Дмитриева Екатерина.

-x^2+7x+8=0x^2-54=-3xпостроить график(лучше в тетради) и подробно рассписать

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сентюрин Виталий.

Первое изображение -x² + 7x + 8 = 0

Второе изображение x² - 54 = -3x



0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для построения графика уравнения -x^2 + 7x + 8 = 0, а также уравнения x^2 - 54 = -3x, мы должны сначала решить эти уравнения и найти координаты точек пересечения кривых с осями x и y. Затем мы построим графики на координатной плоскости.

  1. Решим уравнение -x^2 + 7x + 8 = 0.

Сначала перепишем его в стандартной квадратичной форме:

-x^2 + 7x + 8 = 0

Переносим все члены на одну сторону:

x^2 - 7x - 8 = 0

Теперь решим это квадратное уравнение. Мы можем использовать квадратное уравнение или графический метод. Давайте воспользуемся квадратным уравнением:

D = b^2 - 4ac, где D - дискриминант, a, b и c - коэффициенты квадратного уравнения ax^2 + bx + c = 0.

a = 1, b = -7, c = -8

D = (-7)^2 - 4(1)(-8) = 49 + 32 = 81

D > 0, поэтому у нас есть два действительных корня.

x1 = (-b + √D) / (2a) x1 = (7 + √81) / 2 x1 = (7 + 9) / 2 x1 = 16 / 2 x1 = 8

x2 = (-b - √D) / (2a) x2 = (7 - √81) / 2 x2 = (7 - 9) / 2 x2 = -2 / 2 x2 = -1

Теперь у нас есть два корня: x1 = 8 и x2 = -1.

  1. Решим уравнение x^2 - 54 = -3x.

Перенесем все члены на одну сторону:

x^2 + 3x - 54 = 0

Теперь решим это квадратное уравнение:

a = 1, b = 3, c = -54

D = (3)^2 - 4(1)(-54) = 9 + 216 = 225

D > 0, поэтому у нас есть два действительных корня.

x1 = (-b + √D) / (2a) x1 = (-3 + √225) / 2 x1 = (-3 + 15) / 2 x1 = 12 / 2 x1 = 6

x2 = (-b - √D) / (2a) x2 = (-3 - √225) / 2 x2 = (-3 - 15) / 2 x2 = -18 / 2 x2 = -9

Теперь у нас есть два корня: x1 = 6 и x2 = -9.

Теперь, когда у нас есть значения корней, мы можем построить графики обоих уравнений на координатной плоскости.

Для графика уравнения -x^2 + 7x + 8 = 0:

  • Корни: x1 = 8 и x2 = -1.
  • Дискриминант положителен, поэтому это парабола, направленная вниз.

Для графика уравнения x^2 - 54 = -3x:

  • Корни: x1 = 6 и x2 = -9.
  • Дискриминант положителен, поэтому это тоже парабола, направленная вверх.

Теперь давайте построим графики этих двух парабол на одной координатной плоскости:

[Вставьте здесь график, изображающий обе параболы, проходящие через точки (8, 0) и (-1, 0) для первой параболы, и (6, 0) и (-9, 0) для второй параболы.]

На графике вы увидите две параболы, одна направлена вниз и проходит через точки (8, 0) и (-1, 0), а другая направлена вверх и проходит через точки (6, 0) и (-9, 0). Эти точки представляют корни уравнений.

Графические методы могут быть полезными для визуализации решений уравнений и понимания, как изменение коэффициентов влияет на форму графиков.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос