Вопрос задан 25.09.2023 в 00:10. Предмет Алгебра. Спрашивает Мищенко Алина.

5. Розв'яжи рiвняння. a) 49x² - 9 = 0; б) 9у² + 12у + 4 = 0; B) x³ - x² - 4x +4=0. Без

Параметра!!!!!!​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лопатина Маша.

Ответ:a) 49x² - 9 = 0

Розкриваємо квадратний доданок:

(7x + 3)(7x - 3) = 0

Отже, маємо два розв'язки:

7x + 3 = 0 або 7x - 3 = 0

Розв'язуючи перше рівняння, отримуємо: x = -3/7

Розв'язуючи друге рівняння, отримуємо: x = 3/7

Отже, розв'язки рівняння 49x² - 9 = 0: x = -3/7 або x = 3/7.

б) 9у² + 12у + 4 = 0

Застосовуємо формулу квадратного трення:

D = b² - 4ac = 12² - 4·9·4 = 0

Отже, маємо один розв'язок:

у = -2/3

в) x³ - x² - 4x + 4 = 0

Розкриваємо дужки методом групування:

x²(x - 1) - 4(x - 1) = 0

(x - 1)(x² - 4) = 0

Отже, маємо три розв'язки:

x = 1 або x = -2 або x = 2.

Объяснение:

0 0
Отвечает Казакова Елизавета.

Ответ:

решение смотри на фотографии



0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

a) 49x² - 9 = 0:

Спочатку виразимо 9 як квадрат 3:

49x² - 9 = 0 (7x)² - 3² = 0

Тепер ми можемо використовувати формулу різниці квадратів:

(a - b)(a + b) = a² - b²

У нашому випадку a = 7x і b = 3:

(7x - 3)(7x + 3) = 0

Тепер розв'яжемо обидві дужки:

7x - 3 = 0 7x = 3 x = 3/7

7x + 3 = 0 7x = -3 x = -3/7

Отже, рівняння має два розв'язки: x = 3/7 і x = -3/7.

б) 9у² + 12у + 4 = 0:

Це квадратне рівняння. Ми можемо вирішити його за допомогою квадратного трикутника:

9y² + 12y + 4 = 0

Спочатку поділимо всі коефіцієнти на 4, щоб спростити рівняння:

(9/4)y² + (12/4)y + 1 = 0

Тепер ми можемо записати його у квадратному трикутнику:

(3/2)y² + (3/2)y + 1 = 0

Тепер ми можемо використовувати квадратний трикутник:

(3/2)y² + (3/2)y + 1 = 0

(3/2)y² + (3/2)y + (3/4)² = (3/4)²

(3/2)y² + (3/2)y + (3/4)² = (3/4)²

(3/2)y² + (3/2)y + (3/4)² = (3/4)²

(3/2)y² + (3/2)y + (3/4)² = 9/16

Тепер ми можемо записати це як квадрат бінарний:

(3/2)y² + (3/2)y + (3/4)² = (3/4)²

(3/2)y² + (3/2)y + (3/4)² = (3/4)²

(3/2)y² + (3/2)y + (3/4)² = (3/4)²

(3/2)y² + (3/2)y + (3/4)² = 9/16

Тепер ми можемо розв'язати це рівняння:

(3/2)y + 3/4 = ±√(9/16)

(3/2)y + 3/4 = ±3/4

(3/2)y = -3/4 ± 3/4

(3/2)y = 0 або (3/2)y = -3/2

y = 0 або y = -3/2

Отже, рівняння має два розв'язки: y = 0 і y = -3/2.

в) x³ - x² - 4x + 4 = 0:

Для розв'язання цього кубічного рівняння можна спростити його, факторизувати або використовувати чисельні методи, такі як метод Ньютона. Проте, давайте спростимо його шляхом виокремлення спільного множника.

x³ - x² - 4x + 4 = 0

Спростимо:

x²(x - 1) - 4(x - 1) = 0

Зараз ми можемо використовувати факторизацію за спільним множником:

(x - 1)(x² - 4) = 0

Тепер розв'яжемо обидві дужки:

  1. x - 1 = 0 x = 1

  2. x² - 4 = 0 x² = 4 x = ±2

Отже, рівняння має три розв'язки: x = 1, x = 2 і x = -2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос