Вопрос задан 23.09.2023 в 15:17. Предмет Алгебра. Спрашивает Шапов Павел.

Складіть квадратне рівняння, корені якого у 2 разі більті за відповідні корені рівняння 2х2 - 15х

+ 4 = 0. У відповідь внести добуток коренів складеного рівняння.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лемешевский Андрей.

Відповідь:       x₁' * x₂' = 8 .

Пояснення:

   2х² - 15х + 4 = 0 ;   D = 193 > 0 .

   Нехай його корені  х₁  і  х₂  , тоді корені шуканого кв. рівняння

   х₁' = 2x₁ ;   x₂' = 2x₂ .  Для 1 - го рівняння за Т. Вієта

   { x₁ + x₂ = 15/2 ;    ⇒   { 2( x₁ + x₂ )  = 15 ;       ⇒   { x₁' + x₂' = 15 ;

   { x₁ * x₂ = 4/2 ;             { ( 2x₁ )( 2x₂ ) = 8 ;             { x₁' * x₂' = 8 .

  Тепер уже можемо записати шукане квадратне рівняння :

             х² - 15х + 8 = 0 .       x₁' * x₂' = 8 .

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для складення квадратного рівняння з коренями у 2 рази більших, ніж корені рівняння 2x^2 - 15x + 4 = 0, спочатку знайдемо корені останнього рівняння:

2x^2 - 15x + 4 = 0

Спростимо його, використовуючи квадратну формулу:

x = (-b ± √(b² - 4ac)) / (2a)

a = 2, b = -15, c = 4

x = (15 ± √((-15)² - 4 * 2 * 4)) / (2 * 2)

x = (15 ± √(225 - 32)) / 4

x = (15 ± √193) / 4

Тепер знайдемо корені у 2 рази більші за ці значення:

2x = 2 * (15 ± √193) / 4

x = (15 ± √193) / 2

Отже, корені складеного квадратного рівняння є (15 + √193) / 2 та (15 - √193) / 2.

Тепер ми можемо скласти квадратне рівняння на основі цих коренів:

(x - (15 + √193) / 2)(x - (15 - √193) / 2) = 0

Розкриємо дужки:

x² - (15 + √193) / 2 * x - (15 - √193) / 2 * x + ((15 + √193) / 2) * ((15 - √193) / 2) = 0

x² - (15x + √193x - 15x + √193) / 2 = 0

Тепер спростимо рівняння, помножимо обидві сторони на 2 для позбавлення від знаменника:

2x² - 15x - √193x + 15 * √193 = 0

2x² - (15 + √193)x + 15 * √193 = 0

Отже, квадратне рівняння, корені якого у 2 рази більші, ніж корені рівняння 2x^2 - 15x + 4 = 0, має такий вигляд:

2x² - (15 + √193)x + 15 * √193 = 0

Добуток коренів цього рівняння дорівнює відношенню вільного члена (константи) до коефіцієнта при старшому члені:

Добуток коренів = (15 * √193) / 2 = (15√193) / 2 = 15√193 / 2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос