Вопрос задан 22.09.2023 в 23:10. Предмет Алгебра. Спрашивает Глушевицкий Денис.

11. Найдите корни уравнения: в) 0,5x² + 2x + 2 = 0; г) 0,1x² — 0,6х + 0,9 = 0.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гусейнов Ибрагим.

Объяснение:

а) Чтобы найти корни уравнения 0,5x² + 2x + 2 = 0, мы можем воспользоваться квадратным уравнением. Уравнение имеет вид ax² + bx + c = 0, где a = 0,5, b = 2 и c = 2. Тогда дискриминант можно найти по формуле D = b² - 4ac:

D = (2)² - 4 * 0,5 * 2 = 4 - 4 = 0.

Дискриминант равен нулю, что означает, что у нас есть один действительный корень уравнения:

x = -b / (2a) = -2 / (2 * 0,5) = -2 / 1 = -2.

Ответ: уравнение 0,5x² + 2x + 2 = 0 имеет один корень x = -2.

б) Для уравнения 0,1x² - 0,6x + 0,9 = 0 также используем квадратное уравнение. Здесь a = 0,1, b = -0,6 и c = 0,9. Вычислим дискриминант:

D = (-0,6)² - 4 * 0,1 * 0,9 = 0,36 - 0,36 = 0.

Дискриминант равен нулю, и у нас также есть один действительный корень:

x = -b / (2a) = 0,6 / (2 * 0,1) = 0,6 / 0,2 = 3.

Ответ: уравнение 0,1x² - 0,6x + 0,9 = 0 имеет один корень x = 3.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти корни данных квадратных уравнений, мы можем использовать формулу квадратного уравнения:

Для уравнения вида ax^2 + bx + c = 0, корни можно найти с помощью следующей формулы:

x = (-b ± √(b² - 4ac)) / (2a)

a) Уравнение 0.5x² + 2x + 2 = 0:

a = 0.5, b = 2, c = 2

x = (-2 ± √(2² - 4 * 0.5 * 2)) / (2 * 0.5) x = (-2 ± √(4 - 4)) / 1 x = (-2 ± √0) / 1

Так как дискриминант (значение под корнем) равен 0, у нас есть один корень:

x = -2 / 1 x = -2

Ответ: уравнение имеет один корень x = -2.

б) Уравнение 0.1x² - 0.6x + 0.9 = 0:

a = 0.1, b = -0.6, c = 0.9

x = (-(-0.6) ± √((-0.6)² - 4 * 0.1 * 0.9)) / (2 * 0.1) x = (0.6 ± √(0.36 - 0.36)) / 0.2 x = (0.6 ± √0) / 0.2

Снова у нас есть дискриминант, равный 0, и у нас есть один корень:

x = 0.6 / 0.2 x = 3

Ответ: уравнение имеет один корень x = 3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос