
Sin(a+6pi)ctg(5pi-a)/sin(2pi-a)ctg(5pi+a)=?


Ответы на вопрос

sin(a+6pi)ctg(5pi-a)/sin(2pi-a)ctg(5pi+a)=sina(-ctga)/{(-sina)ctga}=1



Let's simplify the expression step by step:
First, let's look at the trigonometric identities involving cotangent (ctg):
- cot(x) = 1/tan(x)
- cot(-x) = -cot(x)
Now, we can rewrite the expression using these identities:
(sin(a + 6π) * cot(5π - a)) / (sin(2π - a) * cot(5π + a))
Next, let's consider the values of sine and cotangent for angles related to π and 2π:
- sin(π) = 0
- sin(2π) = 0
- cot(π) = 0
- cot(2π) = 0
Since sine and cotangent are both 0 for these angles, we need to determine the values of sine and cotangent for the given angles a, 5π - a, and 5π + a.
- sin(a + 6π) = sin(a) (since adding or subtracting multiples of 2π does not change the sine value)
- cot(5π - a) = -cot(a) (from the identity cot(-x) = -cot(x))
- cot(5π + a) = cot(a) (since adding or subtracting multiples of 2π does not change the cotangent value)
Now, we can substitute these values back into the expression:
(sin(a) * (-cot(a))) / (sin(2π - a) * cot(a))
Now, let's consider the values of sine and cotangent for 2π - a:
- sin(2π - a) = sin(-a) (since sine is an odd function, sin(-x) = -sin(x))
- cot(a) (from the previous step)
Substitute these values into the expression:
(sin(a) * (-cot(a))) / (sin(-a) * cot(a))
Now, we see that cot(a) cancels out in the numerator and denominator:
-cot(a) / (-cot(a))
Finally, the two negative signs cancel out:
1
So, the simplified expression is equal to 1:
(sin(a + 6π) * cot(5π - a)) / (sin(2π - a) * cot(5π + a)) = 1


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili