Вопрос задан 18.08.2023 в 23:50. Предмет Алгебра. Спрашивает Хасанов Азамат.

1)Упростите: 2) Найдите множество решений: А) Б) В) Г) Д) 3) Вычислите cosx, если sinx*tgx=

1/2
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Петров Дима.
1)  ( \frac{ \sqrt{a} }{2} - \frac{1}{2 \sqrt{a} } )^2*( \frac{\sqrt{a}-1}{\sqrt{a}+1} - \frac{\sqrt{a}+1}{\sqrt{a}-1} )= (\frac{a}{4}-2*\frac{ \sqrt{a} }{2}*\frac{1}{2 \sqrt{a} }+ \frac{1}{4a})*
*\frac{(\sqrt{a}-1)^2-(\sqrt{a}+1)^2}{(\sqrt{a}-1)(\sqrt{a}+1)} =( \frac{a}{4} - \frac{1}{2} + \frac{1}{4a} )* \frac{(\sqrt{a}-1-\sqrt{a}-1)(\sqrt{a}-1+\sqrt{a}+1)}{a-1} =
= \frac{a^2-2a+1}{4a}* \frac{(-2)(2 \sqrt{a} )}{a-1}= -\frac{(a-1)^2}{4a}* \frac{4 \sqrt{a} }{a-1} = \frac{a-1}{ \sqrt{a} }

2) А) |x - 10| ≤ 4; -4 ≤ x - 10 ≤ 4; x ∈ [6; 14]
Б) |x - 10| > 4; x ∈ (-oo; 6) U (14; +oo)
В) x^2 > 4; x ∈ (-oo; -2) U (2; +oo)
Г) x^2 ≤ 5; x ∈ [-√5; √5]
Д) (x - 1)^2 < 9; -3 < x - 1 < 3; x ∈ (-2; 4)

3) sin x*tg x = sin x*sin x/cos x = sin^2 x / cos x = (1 - cos^2 x)/cos x = 1/2
2(1 - cos^2 x) = cos x
2cos^2 x + cos x - 2 = 0
Квадратное уравнение относительно cos x
D = 1^2 - 4*2(-2) = 1 + 4*4 = 17
cos x1 = (-1 - √17)/4 ~ -1,28 < -1 - не подходит
cos x2 = (-1 + √17)/4 ~ 0,78 - подходит
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

К сожалению, в вашем вопросе не указаны конкретные математические выражения для упрощения, нахождения множества решений и вычисления. Пожалуйста, предоставьте полные выражения, чтобы я мог вам помочь.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос