
Cos 5 x +2 sin 5 x=0


Ответы на вопрос

Решение смотрите во вложении




To solve the equation cos(5x) + 2sin(5x) = 0, we can use trigonometric identities to simplify and solve for x. Let's work through it step by step.
First, we'll use the Pythagorean identity: sin^2(x) + cos^2(x) = 1.
Divide the entire equation by cos(5x):
cos(5x) / cos(5x) + 2sin(5x) / cos(5x) = 0 / cos(5x)
1 + 2tan(5x) = 0
Now, subtract 1 from both sides:
2tan(5x) = -1
Finally, divide both sides by 2:
tan(5x) = -1/2
Now, we want to find the values of x that satisfy this equation. Remember that the tangent function has a period of π (180 degrees), so we'll look for solutions within that period.
We need to find the angles whose tangent is -1/2. One solution is in the second quadrant, and another is in the fourth quadrant. These angles can be found using the inverse tangent function (arctan or tan^-1):
Angle in the second quadrant: arctan(-1/2) Angle in the fourth quadrant: π + arctan(-1/2)
Now, let's find the numerical values of these angles:
Angle in the second quadrant: arctan(-1/2) ≈ -26.57 degrees or -π/6 radians Angle in the fourth quadrant: π + arctan(-1/2) ≈ 135.43 degrees or 5π/6 radians
Since the tangent function has a period of π (180 degrees), we can add or subtract integer multiples of π to find all the possible solutions:
5x = -π/6 + kπ 5x = 5π/6 + kπ
Now, solve for x:
x = (-π/6 + kπ) / 5 x = (5π/6 + kπ) / 5
where k is an integer.
These are the general solutions for the equation cos(5x) + 2sin(5x) = 0. They represent all possible values of x that satisfy the given equation.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili