Решите |x + 1 | > | 3 - 2x |
Ответы на вопрос

To solve the inequality |x + 1| > |3 - 2x|, we'll need to consider different cases depending on the value of x. The absolute value of a number can be either positive or zero, so we'll need to account for both possibilities.
Case 1: (x + 1) and (3 - 2x) are both positive In this case, the inequality remains the same since the absolute values will not affect the direction of the inequality: x + 1 > 3 - 2x
Simplify the inequality: x + 2x > 3 - 1 3x > 2
Case 2: (x + 1) and (3 - 2x) are both negative When both expressions inside the absolute values are negative, the absolute values effectively change the direction of the inequality: -(x + 1) > -(3 - 2x)
Simplify the inequality: -x - 1 > -3 + 2x
Bring all x terms to one side of the inequality: -x - 2x > -3 + 1 -3x > -2
Now, we need to consider the case when one expression inside the absolute value is positive, and the other is negative:
Case 3: (x + 1) is positive and (3 - 2x) is negative When x + 1 is positive, but 3 - 2x is negative, the absolute value |x + 1| becomes (x + 1), and |3 - 2x| becomes -(3 - 2x):
x + 1 > -(3 - 2x)
Simplify the inequality: x + 1 > -3 + 2x
Move all x terms to one side of the inequality: x - 2x > -3 - 1 -x > -4
Now, let's consider the last case:
Case 4: (x + 1) is negative and (3 - 2x) is positive When x + 1 is negative, but 3 - 2x is positive, the absolute value |x + 1| becomes -(x + 1), and |3 - 2x| becomes (3 - 2x):
-(x + 1) > 3 - 2x
Simplify the inequality: -x - 1 > 3 - 2x
Move all x terms to one side of the inequality: -x + 2x > 3 + 1 x > 4
Now, we have four cases, and we need to combine their results. Remember that we have to consider both the sign and the magnitude of the results:
Case 1: 3x > 2 Case 2: -3x > -2 (Remember to flip the inequality when multiplying by a negative number) Case 3: x > -4 + 2x Case 4: x > 4
Now, let's simplify Case 3: x - 2x > -4 -x > -4
To combine Case 3 and Case 2, we need to flip the inequality of Case 2 and add them:
-3x > -2 and -x > -4
Combine the inequalities:
-3x + x > -2 + (-4) -2x > -6
Now, divide by -2, and remember to reverse the inequality when dividing by a negative number:
x < 3
So, the final solution for the inequality |x + 1| > |3 - 2x| is: x > 4 or x < 3
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
