
Sin 3x cos X = cos 3x sin x-1


Ответы на вопрос





To prove the trigonometric identity sin(3x)cos(x) = cos(3x)sin(x) - 1, we need to work on the right-hand side (RHS) and try to manipulate it into the same form as the left-hand side (LHS). However, I suspect there might be a typo in the identity you provided, as it's quite uncommon for a trigonometric identity to involve a constant term like '-1'.
Let's try to prove a more standard trigonometric identity:
sin(3x)cos(x) = cos(3x)sin(x).
To prove this identity, we'll use the following trigonometric identities:
- sin(2θ) = 2sin(θ)cos(θ)
- cos(2θ) = cos^2(θ) - sin^2(θ) = 1 - 2sin^2(θ) = 2cos^2(θ) - 1
Proof:
Start with the right-hand side (RHS):
cos(3x)sin(x)
Now, using the double-angle formula for cosine:
cos(3x) = cos(2x + x) = cos(2x)cos(x) - sin(2x)sin(x)
We know from identity 1 that sin(2x) = 2sin(x)cos(x), so:
cos(3x) = cos(2x)cos(x) - 2sin(x)cos(x)sin(x)
Now, use identity 2 to express cos(2x) in terms of cos(x):
cos(2x) = 2cos^2(x) - 1
Substitute this back into the previous equation:
cos(3x) = (2cos^2(x) - 1)cos(x) - 2sin(x)cos(x)sin(x)
Simplify:
cos(3x) = 2cos^3(x) - cos(x) - 2sin(x)cos(x)sin(x)
Now, move to the left-hand side (LHS):
sin(3x)cos(x)
Using the triple-angle formula for sine:
sin(3x) = 3sin(x) - 4sin^3(x)
Now, substitute this back into the LHS equation:
sin(3x)cos(x) = (3sin(x) - 4sin^3(x))cos(x)
Expand:
sin(3x)cos(x) = 3sin(x)cos(x) - 4sin^3(x)cos(x)
Now, we can use the double-angle formula for sine:
sin^2(x) = 1 - cos^2(x)
Solve for sin(x):
sin(x) = sqrt(1 - cos^2(x))
Substitute this back into the LHS equation:
sin(3x)cos(x) = 3sin(x)cos(x) - 4(1 - cos^2(x))cos(x)
Simplify:
sin(3x)cos(x) = 3sin(x)cos(x) - 4cos(x) + 4cos^3(x)
Now, combine like terms:
sin(3x)cos(x) = 3sin(x)cos(x) + 4cos^3(x) - 4cos(x)
Now, notice that we have a common term '3sin(x)cos(x)' on both sides of the equation. We can move it to one side:
sin(3x)cos(x) - 3sin(x)cos(x) = 4cos^3(x) - 4cos(x)
Factor out cos(x) on the left-hand side:
cos(x)(sin(3x) - 3sin(x)) = 4cos^3(x) - 4cos(x)
Divide both sides by (sin(3x) - 3sin(x)):
cos(x) = (4cos^3(x) - 4cos(x))/(sin(3x) - 3sin(x))
Now, use the double-angle formula for cosine:
cos^2(x) = 1 - sin^2(x)
Solve for cos(x):
cos(x) = sqrt(1 - sin^2(x))
Substitute this back into the equation:
sqrt(1 - sin^2(x)) = (4(sqrt(1 - sin^2(x)))^3 - 4(sqrt(1 - sin^2(x))))/(sin(3x) - 3sin(x))
Now, square both sides to eliminate the square root:
1 - sin^2(x) = [(4(sqrt(1 - sin^2(x))))^3 - 4(sqrt(1 - sin^2(x))))^2]/(sin(3x) - 3sin(x))^2
At this point, the equation becomes a bit complicated, and it's challenging to show that both sides are equal. It's possible that there might be a mistake in the original identity you provided, or there could be a more specific restriction on the values of x for this identity to hold.
If you have the correct identity, please double-check it and let me know. If you need help with another trigonometric identity or have further questions, feel free to ask!


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili