
13 + х --------- > 0 2,5 х 2 х - 4 --------- >0 х + 2


Ответы на вопрос





To solve the inequalities, we need to find the values of x that make each expression greater than zero.
- :
To solve this inequality, we need to consider three intervals based on the sign of .
Interval 1: : Let's pick (any value smaller than -2 will work). Then the expression becomes: . Since this value is negative, this interval does not satisfy the inequality.
Interval 2: : Let's pick (any value between -2 and -\frac{2}{3} will work). Then the expression becomes: . Since this value is negative, this interval does not satisfy the inequality.
Interval 3: : Let's pick (any value greater than -\frac{2}{3} will work). Then the expression becomes: . Since this value is positive, this interval satisfies the inequality.
So, the solution to the inequality is .
- :
To solve this inequality, we need to consider two intervals based on the sign of .
Interval 1: : Let's pick (any value smaller than -2 will work). Then the expression becomes: . Since this value is positive, this interval satisfies the inequality.
Interval 2: : Let's pick (any value greater than -2 will work). Then the expression becomes: . Since this value is negative, this interval does not satisfy the inequality.
So, the solution to the inequality is .
In summary, the solutions to the given inequalities are:


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili