Вопрос задан 30.07.2023 в 01:42. Предмет Алгебра. Спрашивает Осипов Кирилл.

2х³-9х²+12х-9 график функции

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бежан Данила.

Ответ:

график на фото

область определения отсутствует

корень(3,0)

пересечение с осью y (0,-9)



0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To sketch the graph of the function f(x)=2x39x2+12x9f(x) = 2x^3 - 9x^2 + 12x - 9, we'll follow a step-by-step process:

Step 1: Find the x-intercepts (where the graph crosses the x-axis): To find the x-intercepts, set f(x)f(x) to zero and solve for xx: 2x39x2+12x9=02x^3 - 9x^2 + 12x - 9 = 0

We can use factoring or other methods to find the roots, but in this case, we'll solve it numerically. Using a graphing calculator or software, we find the x-intercepts as follows: x0.58x \approx -0.58, x2.79x \approx 2.79, and x3.79x \approx 3.79.

Step 2: Find the y-intercept (where the graph crosses the y-axis): To find the y-intercept, set x=0x = 0 in the equation f(x)=2x39x2+12x9f(x) = 2x^3 - 9x^2 + 12x - 9: f(0)=2(0)39(0)2+12(0)9=9f(0) = 2(0)^3 - 9(0)^2 + 12(0) - 9 = -9

So, the y-intercept is at the point (0, -9).

Step 3: Find critical points and inflection points: To find critical points, we need to find the values of xx for which the derivative of f(x)f(x) is zero or undefined. Let's first find the derivative of f(x)f(x): f(x)=d/dx(2x39x2+12x9)=6x218x+12f'(x) = d/dx(2x^3 - 9x^2 + 12x - 9) = 6x^2 - 18x + 12

Next, set f(x)=0f'(x) = 0 and solve for xx: 6x218x+12=06x^2 - 18x + 12 = 0

Divide through by 6: x23x+2=0x^2 - 3x + 2 = 0

Factor the quadratic equation: (x1)(x2)=0(x - 1)(x - 2) = 0

So, the critical points are x=1x = 1 and x=2x = 2.

Step 4: Find the concavity and inflection points: To find the concavity and inflection points, we need to find the second derivative of f(x)f(x): f(x)=d2/dx2(2x39x2+12x9)=12x18f''(x) = d^2/dx^2(2x^3 - 9x^2 + 12x - 9) = 12x - 18

Set f(x)=0f''(x) = 0 and solve for xx: 12x18=012x - 18 = 0

Divide through by 6: 2x3=02x - 3 = 0

x=32x = \frac{3}{2}

Since f(x)f''(x) is a linear function, there is only one inflection point, which is at x=32x = \frac{3}{2}.

Step 5: Plot the points and sketch the graph: Now that we have all the critical points, x-intercepts, y-intercept, and inflection point, we can sketch the graph.

  • The y-intercept is at (0, -9).
  • The x-intercepts are approximately at (-0.58, 0), (2.79, 0), and (3.79, 0).
  • The critical points are at (1, -4) and (2, -1).
  • The inflection point is at (32\frac{3}{2}, -252\frac{25}{2}).

To understand the overall behavior of the function, we can also check the end behaviors. As xx approaches negative or positive infinity, the dominant term will be 2x32x^3. Since the leading coefficient is positive, the graph will rise on both ends.

Combining all this information, the graph will look like:

yaml
| + + + + | | | | | | | | | | | | | | | -9----+-------+-----------+-------+------------+-----> x | | | | | | | | | | | | | | | | - - - - - - - - - - - - - - - - | | |

Please note that the sketch provided here is just a rough representation of the graph based on the critical points, intercepts, and end behavior. For a more accurate and detailed graph, you can use graphing software or calculators.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос