Вопрос задан 29.07.2023 в 19:29. Предмет Алгебра. Спрашивает Жимань Іра.

X^3 + 2x^2 - x - 2 = 0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Абдуова Мадина.
!!!!!!!!!!!!!!!!!!!!!!!

0 0
Отвечает Чертовской Миша.
Очевидно х-2 - корень.Поделим на (х+2).                                                                                 
х*х-1=0                                             
х*х=1                                                        
х=-1 или х=-1                                                          
Ответ? х=1, х=-1, х=-2.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the equation x3+2x2x2=0x^3 + 2x^2 - x - 2 = 0, we can use various methods such as factoring, the rational root theorem, or numerical methods like Newton's method. Let's try to factor the equation first.

Unfortunately, the equation is not easily factorable into simple linear or quadratic factors. So, we'll use the numerical method called the "Rational Root Theorem" to find any rational roots (if they exist), and then we can use synthetic division or long division to factor the polynomial further if needed.

The Rational Root Theorem states that any rational root (if it exists) of a polynomial with integer coefficients axn+bxn1++cax^n + bx^{n-1} + \ldots + c must be of the form pq\frac{p}{q}, where pp is a factor of the constant term cc and qq is a factor of the leading coefficient aa.

For our equation x3+2x2x2=0x^3 + 2x^2 - x - 2 = 0, the leading coefficient is 1, and the constant term is -2.

The factors of -2 are ±1\pm 1 and ±2\pm 2, and the factors of 1 (leading coefficient) are ±1\pm 1.

Now, we can test these possible rational roots one by one to see if any of them satisfy the equation:

  1. x=1x = 1: (1)3+2(1)212=1+212=0(1)^3 + 2(1)^2 - 1 - 2 = 1 + 2 - 1 - 2 = 0

So, x=1x = 1 is a root of the equation.

Now that we've found one root, x=1x = 1, we can factor the polynomial by performing synthetic division or long division.

Using synthetic division: Divide x3+2x2x2x^3 + 2x^2 - x - 2 by x1x - 1 (since x=1x = 1 is a root).

lua
1 | 1 2 -1 -2 | 1 3 2 ------------------ 1 3 2 0

The result is x2+3x+2x^2 + 3x + 2.

Now, let's solve the quadratic equation x2+3x+2=0x^2 + 3x + 2 = 0 by factoring or using the quadratic formula.

x2+3x+2=0x^2 + 3x + 2 = 0 factors as (x+1)(x+2)=0(x + 1)(x + 2) = 0.

So the remaining roots are x=1x = -1 and x=2x = -2.

Therefore, the solutions to the original equation x3+2x2x2=0x^3 + 2x^2 - x - 2 = 0 are x=1x = 1, x=1x = -1, and x=2x = -2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос