
Log3(5x+3)=log3(7x+3)


Ответы на вопрос





To solve the equation log3(5x+3) = log3(7x+3), we can use the properties of logarithms. The basic property we'll use is that if log3(a) = log3(b), then a = b.
Step 1: Set the arguments of the logarithms equal to each other:
5x + 3 = 7x + 3
Step 2: Simplify the equation by moving the variables to one side and the constants to the other side:
5x - 7x = 3 - 3
-2x = 0
Step 3: Solve for x:
x = 0
So the solution to the equation is x = 0. However, we should check if this solution is valid, as the domain of the logarithmic function requires its argument to be greater than 0.
Step 4: Check the validity of the solution:
For x = 0, both arguments of the logarithms become:
log3(5(0) + 3) = log3(3) = log3(7(0) + 3) = log3(3)
Since the argument of the logarithm is the same for both sides of the equation, x = 0 is a valid solution.
Therefore, the only solution to the equation log3(5x+3) = log3(7x+3) is x = 0.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili