
Система x²+y²=5 log2x+log2y=1


Ответы на вопрос

Сложим это уравнение с уравнением
Получим:
1) Возьмем сначала
Тогда
И x=2, x=1; Если
Ответ: (2;1) (-2;-1) (1;2) (-1;-2)



To solve the system of equations x² + y² = 5 and log₂(x) + log₂(y) = 1, we can use both algebraic and logarithmic properties. Let's go step by step:
Step 1: Simplify the second equation using logarithmic properties. Since log₂(x) + log₂(y) = 1, we can combine the logarithms using the product rule of logarithms:
log₂(xy) = 1
Step 2: Rewrite the equation in exponential form. Since log₂(xy) = 1, we can rewrite it as an exponential equation:
2^1 = xy
Step 3: Simplify the exponential equation.
xy = 2
Step 4: Now we have a system of equations:
- x² + y² = 5
- xy = 2
Step 5: Solve the system of equations. We can use substitution or elimination method here.
Method 1 (Substitution): From equation 2, we can express y in terms of x:
y = 2/x
Now substitute this value of y into equation 1:
x² + (2/x)² = 5
Simplify the equation:
x² + 4/x² = 5
Multiply the entire equation by x² to get rid of the fraction:
x⁴ + 4 = 5x²
Now rearrange the equation:
x⁴ - 5x² + 4 = 0
This is a quadratic equation in terms of x². We can factor it:
(x² - 1)(x² - 4) = 0
Now set each factor to zero and solve for x:
x² - 1 = 0 x² = 1 x = ±1
x² - 4 = 0 x² = 4 x = ±2
Now that we have the values of x, we can find the corresponding values of y using equation 2:
For x = 1, y = 2/x = 2/1 = 2 For x = -1, y = 2/x = 2/-1 = -2 For x = 2, y = 2/x = 2/2 = 1 For x = -2, y = 2/x = 2/-2 = -1
So, the solutions to the system of equations are: (x, y) = (1, 2), (-1, -2), (2, 1), (-2, -1)
Method 2 (Elimination): From equation 2, we know that xy = 2. Now, we can express y in terms of x:
y = 2/x
Substitute this value of y into equation 1:
x² + (2/x)² = 5
Simplify the equation:
x² + 4/x² = 5
Now, multiply the entire equation by x² to get rid of the fraction:
x⁴ + 4 = 5x²
Rearrange the equation:
x⁴ - 5x² + 4 = 0
This is a quadratic equation in terms of x². We can factor it:
(x² - 1)(x² - 4) = 0
Now set each factor to zero and solve for x:
x² - 1 = 0 x² = 1 x = ±1
x² - 4 = 0 x² = 4 x = ±2
Now that we have the values of x, we can find the corresponding values of y using equation 2:
For x = 1, y = 2/x = 2/1 = 2 For x = -1, y = 2/x = 2/-1 = -2 For x = 2, y = 2/x = 2/2 = 1 For x = -2, y = 2/x = 2/-2 = -1
So, the solutions to the system of equations are: (x, y) = (1, 2), (-1, -2), (2, 1), (-2, -1)
Both methods yield the same solutions for the system of equations.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili