(x²+2x-15)(x²-4x+3)(x-1)≤0
Ответы на вопрос

To solve the inequality , we need to find the values of that make the expression on the left-hand side less than or equal to zero.
Step 1: Find the critical points by setting each factor equal to zero and solving for :
: Factoring the quadratic equation gives , so the critical points are and .
: Factoring the quadratic equation gives , so the critical points are and .
: Solving for gives .
Step 2: Plot these critical points on a number line:
python... -5 ----- 1 ----- 3 ...
Step 3: Test each interval between the critical points to determine the sign of the expression:
For : Pick (arbitrary value less than -5) Since the product is zero, we include this interval.
For : Pick (arbitrary value between -5 and 1) Since the product is positive, we exclude this interval.
For : Pick (arbitrary value between 1 and 3) Since the product is negative, we include this interval.
For : Pick (arbitrary value greater than 3) Since the product is positive, we exclude this interval.
Step 4: Write the solution:
The solution to the inequality is .
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
