
Sin^2x+2sinx-3cos^2x+1=0


Ответы на вопрос

вводим замену ,
возвращаемся к замене
(1) , l є Z
(2)
, k є Z
, k є Z
ответ:, l є Z
, k є Z




To solve the trigonometric equation sin^2(x) + 2sin(x) - 3cos^2(x) + 1 = 0, we can use some trigonometric identities to simplify the equation and find its solutions. Here's how you can do it step by step:
Step 1: Use the Pythagorean identity sin^2(x) + cos^2(x) = 1 to replace cos^2(x) in the equation.
sin^2(x) + 2sin(x) - 3(1 - sin^2(x)) + 1 = 0
Step 2: Distribute the -3 through the parentheses.
sin^2(x) + 2sin(x) - 3 + 3sin^2(x) + 1 = 0
Step 3: Combine like terms.
4sin^2(x) + 2sin(x) - 2 = 0
Step 4: Divide the entire equation by 2 to simplify further.
2sin^2(x) + sin(x) - 1 = 0
Now we have a quadratic equation in terms of sin(x). Let's solve it by factoring:
Step 5: Factor the quadratic equation.
(2sin(x) - 1)(sin(x) + 1) = 0
Now we have two factors that could equal zero:
- 2sin(x) - 1 = 0
- sin(x) + 1 = 0
Step 6: Solve each factor for x:
- 2sin(x) - 1 = 0
Add 1 to both sides:
2sin(x) = 1
Divide by 2:
sin(x) = 1/2
To find the solutions for sin(x) = 1/2, we look for angles in the unit circle where the sine value is 1/2. These angles are π/6 and 5π/6, or in degrees approximately 30° and 150°.
- sin(x) + 1 = 0
Subtract 1 from both sides:
sin(x) = -1
The solution for sin(x) = -1 is the angle -π/2 or -90°.
So, the solutions to the original trigonometric equation sin^2(x) + 2sin(x) - 3cos^2(x) + 1 = 0 are:
x = π/6 (30°) x = 5π/6 (150°) x = -π/2 (-90°)


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili