
Вопрос задан 22.05.2019 в 04:29.
Предмет Алгебра.
Спрашивает Афанасьева Диана.
В четырехзначном числе каждую цифру увеличили на 1 или на 5, в результате чего оно увеличилось в
четыре раза. Каким было исходное число? (Укажите все варианты)

Ответы на вопрос

Отвечает Дмитрюк Алена.
Пусть abcd Записывается оно как 1000a+100b+10c+d. Увеличим каждую цифру на 1 и получим число в 4 раза больше изначального: 1000(a+1)+100(b+1)+10(c+1)+d+1=4(1000a+100b+10c+d)
Если увеличить на 5 каждую цифру, то получится 1000(a+5)+100(b+5)+10(c+5)+d+5=4(1000a+100b+10c+d)
Рассмотрим первый случай: 3000a+300b+30c+3d-1111=0
Рассмотрим второй случай: 3000a+300b+30c+3d-5555=0
Если увеличить на 5 каждую цифру, то получится 1000(a+5)+100(b+5)+10(c+5)+d+5=4(1000a+100b+10c+d)
Рассмотрим первый случай: 3000a+300b+30c+3d-1111=0
Рассмотрим второй случай: 3000a+300b+30c+3d-5555=0


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili