Вопрос задан 27.07.2023 в 09:44. Предмет Алгебра. Спрашивает Хаслер Анастасия.

Решить неравенство: 1. (х-9)(х-2)>0 2. (х-4)(х-5)<0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ибатова Сабина.
Скорее всего, вот так

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the inequalities, we'll use a common method known as the sign chart. First, we'll find the critical points by setting each factor equal to zero and then analyze the sign of the expression in different intervals to determine the regions where the inequality holds true.

  1. (x - 9)(x - 2) > 0:

Step 1: Find the critical points by setting each factor equal to zero and solving for x.

x - 9 = 0 -> x = 9 x - 2 = 0 -> x = 2

Step 2: Create a sign chart using the critical points.

| x < 2 | 2 < x < 9 | x > 9 |

(x - 9)(x - 2) | + | - | + |

Step 3: Determine the sign of the expression in each interval.

  • For x < 2: Both factors are negative, and the product is positive.
  • For 2 < x < 9: One factor is negative (x - 9), and the other is positive (x - 2), so the product is negative.
  • For x > 9: Both factors are positive, and the product is positive.

Step 4: Write down the solution to the inequality.

The inequality (x - 9)(x - 2) > 0 is satisfied in the intervals (-∞, 2) and (9, ∞).

  1. (x - 4)(x - 5) < 0:

Step 1: Find the critical points by setting each factor equal to zero and solving for x.

x - 4 = 0 -> x = 4 x - 5 = 0 -> x = 5

Step 2: Create a sign chart using the critical points.

| x < 4 | 4 < x < 5 | x > 5 |

(x - 4)(x - 5) | - | + | - |

Step 3: Determine the sign of the expression in each interval.

  • For x < 4: Both factors are negative, and the product is positive.
  • For 4 < x < 5: One factor is negative (x - 4), and the other is positive (x - 5), so the product is negative.
  • For x > 5: Both factors are negative, and the product is positive.

Step 4: Write down the solution to the inequality.

The inequality (x - 4)(x - 5) < 0 is satisfied in the interval (4, 5).

So, to summarize:

  1. The solution to (x - 9)(x - 2) > 0 is: x < 2 or x > 9.
  2. The solution to (x - 4)(x - 5) < 0 is: 4 < x < 5.
0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос