
2arccos(1/2)+arctg(1)+arsin√2/2


Ответы на вопрос

2 arccos(1/2) + arctg(1) + arcsin(√2/2) = 2π/3 + π/4 + π/4 = 2π/3 + 2π/4 = 14π/12 = 7π/6



To simplify the expression, let's start by evaluating each individual term step by step:
2arccos(1/2): The value of arccos(1/2) is the angle whose cosine is 1/2. The principal value of arccos(1/2) is π/3 radians or 60 degrees. Therefore, 2arccos(1/2) = 2 * π/3 = 2π/3.
arctg(1): The value of arctg(1) is the angle whose tangent is 1. The principal value of arctg(1) is π/4 radians or 45 degrees.
arsin(√2/2): The value of arcsin(√2/2) is the angle whose sine is √2/2. The principal value of arcsin(√2/2) is π/4 radians or 45 degrees.
Now, let's add these values together:
2π/3 + π/4 + π/4
To add fractions, we need a common denominator, which is 12 in this case:
(8π + 3π + 3π) / 12
Combine the numerators:
14π / 12
Now, simplify the fraction:
π / (12 / 14)
To reduce the fraction, find the greatest common divisor (GCD) of 12 and 14, which is 2:
π / (6 / 7)
Finally, multiply the numerator by the reciprocal of the denominator:
π * (7 / 6)
The simplified expression is:
(7π / 6)


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili