
Решите неравенство (2x+5)^2≥ (5x-2)^2


Ответы на вопрос




To solve the inequality , we can use the property that for any real numbers and , if and only if or . In other words, the square of a real number is non-negative, so the inequality is preserved.
So, we have two cases to consider:
Case 1: and . Case 2: and .
Let's solve these two cases separately:
Case 1:
Expanding both sides:
Bringing all terms to one side to form a quadratic inequality:
Simplifying:
Now, we can solve for by setting less than or equal to zero:
Solving for :
Divide both sides by 21:
Now, take the square root of both sides (remembering to consider both positive and negative roots):
Case 2:
Expanding both sides:
Bringing all terms to one side to form a quadratic inequality:
Simplifying:
This is the same inequality as in Case 1.
Therefore, the solutions to the inequality are: or
Please note that in Case 2, there is no new solution. The inequality has the same solution set as in Case 1 because both sides of the original inequality are equal.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili