
2x^2-y^2=34 2x^2+y^2=66 Метод сложения.


Ответы на вопрос





To solve the system of equations using the method of addition (also known as the method of elimination), we need to eliminate one of the variables by adding the two equations together. The goal is to create a new equation with only one variable, which we can then solve for its value. Let's proceed step by step:
Given system of equations:
- 2x^2 - y^2 = 34
- 2x^2 + y^2 = 66
Step 1: Add the two equations to eliminate y^2: (2x^2 - y^2) + (2x^2 + y^2) = 34 + 66
Simplifying the equation: 4x^2 = 100
Step 2: Divide both sides by 4 to isolate x^2: x^2 = 100 / 4 x^2 = 25
Step 3: Take the square root of both sides to find x: x = ±√25 x = ±5
Now that we have the values of x, we can find the corresponding values of y by substituting x back into one of the original equations. Let's use equation (1):
2x^2 - y^2 = 34 2(5)^2 - y^2 = 34 2 * 25 - y^2 = 34 50 - y^2 = 34
Subtract 50 from both sides: -y^2 = 34 - 50 -y^2 = -16
Step 4: Multiply both sides by -1 to solve for y^2: y^2 = 16
Step 5: Take the square root of both sides to find y: y = ±√16 y = ±4
So the solutions to the system of equations are:
- x = 5, y = 4
- x = 5, y = -4
- x = -5, y = 4
- x = -5, y = -4
Therefore, there are four solutions to the system of equations using the method of addition.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili