Вопрос задан 22.07.2023 в 06:29. Предмет Алгебра. Спрашивает Андреевна Елена.

Производная от sin^3x

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Корнеева Лиза.

(sin^3x)'=3sin^2x × cosx

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения производной от функции sin^3(x), сначала воспользуемся формулой для производной синуса:

d/dx (sin(x)) = cos(x).

Теперь применим правило дифференцирования произведения функций:

d/dx (u^3) = 3u^2 * du/dx,

где u = sin(x).

Таким образом, производная функции sin^3(x) будет равна:

d/dx (sin^3(x)) = 3 * sin^2(x) * cos(x).

Это и есть ответ: производная от sin^3(x) равна 3 * sin^2(x) * cos(x).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос