Вопрос задан 21.07.2023 в 15:15. Предмет Алгебра. Спрашивает Тян Настя.

Cosx=-√3/2 ПОМОГИТЕ, ПОЖАЛУЙСТА!!!

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Савченко Анастасия.

x=±arccos(-√3/2)+2πk

x=π±arccos(√3/2)+2πk

x=π±π/6+2πk

x=±5π/6+2πk

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения уравнения cos(x) = -√3/2, нам понадобятся знания о значениях тригонометрических функций на различных углах. Нам известно, что cos(π/6) = √3/2.

Таким образом, нам нужно найти такой угол x, чтобы cos(x) был равен -√3/2. Так как cos(x) имеет период 2π, то можно выразить это как:

x = π ± π/6

Это даст нам два значения x:

  1. x = π + π/6 x = (6π + π)/6 x = 7π/6

  2. x = π - π/6 x = (6π - π)/6 x = 5π/6

Таким образом, уравнение cos(x) = -√3/2 имеет два решения: x = 7π/6 и x = 5π/6. Это два угла, в которых косинус равен -√3/2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос