Let's break down each of the given expressions step by step:
- 1−sin2αsin2α⋅cot2α
We can manipulate the expression using trigonometric identities:
First, we know that cotα=tanα1, and tanα=cosαsinα.
cotα=cosαsinα1=sinαcosα
Now, let's rewrite the original expression:
1−sin2αsin2α⋅cot2α=1−sin2αsin2α⋅(sinαcosα)2=1−sin2αsin2α⋅sin2αcos2α
Now, we know the Pythagorean identity sin2α+cos2α=1, which implies cos2α=1−sin2α. We can use this to simplify further:
1−sin2αsin2α⋅sin2αcos2α=1−sin2αsin2α⋅sin2α1−sin2α=(1−sin2α)sin2αsin2α(1−sin2α)
Now, the term (1−sin2α) cancels out:
(1−sin2α)sin2αsin2α(1−sin2α)=sin2αsin2α=1
So, the first expression simplifies to 1.
- (sinα−cosα)2+(cosα+sinα)2
Let's expand and simplify this expression:
(sinα−cosα)2=sin2α−2sinαcosα+cos2α
(cos
0
0