
Вопрос задан 21.07.2023 в 03:46.
Предмет Алгебра.
Спрашивает Илахунова Дильхумар.
X²+8x+15>0x²-4x-5>0


Ответы на вопрос

Отвечает Золотарева Елизавета.
x²+8x+15>0
x²+8x+15=0, a=1,b=8, c= 15
D=b²-4ac=8²-4×1×15=64-60=4
x1=-b-√D/2 = -8-√4/2=-8-2/2=-10:2=-5
x2=-b+√D /2=-8+√4/2=-8+2/2=-3



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
To solve the inequalities and , we'll break it down into two separate inequalities and solve each one separately.
- Solve : To solve this quadratic inequality, we can use the factored form. However, since the discriminant is positive (in this case, it's ), we know that the parabola opens upwards, and there will be two distinct real solutions. Therefore, we can use the sign of the coefficient of to determine the intervals where the inequality holds.
Let's find the roots of by factoring:
Setting each factor to zero and solving for :
Now, we have three intervals to check: , , and .
For , we can choose : Since , the inequality holds for .
For , we can choose : Since , the inequality does not hold for .
For , we can choose : Since , the inequality holds for .
Thus, the solution to is or .
- Solve : Similarly, let's find the roots of by factoring:
Setting each factor to zero and solving for :
Now, we have three intervals to check: , , and .
For , we can choose :
Похожие вопросы

Алгебра 232