
Найти предел с решением:


Ответы на вопрос

Ответ: -2.
Объяснение:
Прежде всего заметим, что так как выражение под знаком логарифма должно быть положительно, то 1-x>1, откуда x<1. При этом выражение ln(1-x) при x⇒1 стремится к -∞, выражение tg(π*x/2) - к +∞, а выражение ctg(π*x) - к -∞.
Пусть A - искомый предел. Пусть B=lim ln(1-x)/ctg(π*x), а C=lim tg(π*x/2)/ctg(π*x). Тогда A=B+C. На основании изложенного, предел B при x⇒1 представляет собой неопределённость вида -∞/(-∞)=∞/∞, а предел C - неопределённость вида ∞/(-∞)=-∞/∞.
1. Найдём предел B, для чего используем правило Лопиталя. Производная [ln(1-x)]'=-1/(1-x), производная [ctg(π*x)]'=-π/sin²(π*x), а отношение этих производных равно sin²(π*x)/[π*(1-x)]. При x⇒1 это отношение представляет собой неопределённость вида 0/0, поэтому применим правило Лопиталя повторно. Производная числителя [sin²(π*x)]'=π*sin(2*π*x), производная знаменателя [π*(1-x)]'=-π, а отношение производных равно -sin(2*π*x). При x⇒1 это отношение стремится к 0, поэтому B=0.
2. Найдём предел C. Для этого заметим, что ctg(π*x)=1/tg(π*x), а tg(π*x)=2*tg(π*x/2)/[1-tg²(π*x/2)], так что tg(π*x/2)/ctg(π*x)=tg(π*x/2)*tg(π*x)=2*tg²(π*x/2)/[1-tg²(π*x/2)]. Тогда C=2*lim [tg²(π*x/2)]/[1-tg²(π*x/2)]=2*lim[1/(1/tg²(π*x/2)-1)]=2*1/(0-1)=-2.
3. Находим A=B+C=0+(-2)=-2



К сожалению, я не вижу математического выражения или предела в вашем запросе. Если у вас есть конкретное выражение, для которого вы хотите найти предел, пожалуйста, предоставьте его, и я с радостью помогу вам с решением.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili