Вопрос задан 19.07.2023 в 06:40. Предмет Алгебра. Спрашивает Киося Наташа.

Найти предел с решением:

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ляхимец Евгения.

Ответ: -2.

Объяснение:

Прежде всего заметим, что так как выражение под знаком логарифма должно быть положительно, то 1-x>1, откуда x<1. При этом выражение ln(1-x) при x⇒1 стремится к -∞, выражение tg(π*x/2) - к +∞, а выражение ctg(π*x) - к -∞.

Пусть A - искомый предел. Пусть B=lim ln(1-x)/ctg(π*x), а C=lim tg(π*x/2)/ctg(π*x). Тогда A=B+C. На основании изложенного, предел B при x⇒1 представляет собой неопределённость вида -∞/(-∞)=∞/∞, а предел C - неопределённость вида ∞/(-∞)=-∞/∞.

1. Найдём предел B, для чего используем правило Лопиталя. Производная [ln(1-x)]'=-1/(1-x), производная [ctg(π*x)]'=-π/sin²(π*x), а отношение этих производных равно sin²(π*x)/[π*(1-x)]. При x⇒1 это отношение представляет собой неопределённость вида 0/0, поэтому   применим правило Лопиталя повторно. Производная числителя [sin²(π*x)]'=π*sin(2*π*x), производная знаменателя [π*(1-x)]'=-π, а отношение производных равно -sin(2*π*x). При x⇒1 это отношение стремится к 0, поэтому B=0.

2. Найдём предел C. Для этого заметим, что ctg(π*x)=1/tg(π*x), а tg(π*x)=2*tg(π*x/2)/[1-tg²(π*x/2)], так что tg(π*x/2)/ctg(π*x)=tg(π*x/2)*tg(π*x)=2*tg²(π*x/2)/[1-tg²(π*x/2)]. Тогда C=2*lim [tg²(π*x/2)]/[1-tg²(π*x/2)]=2*lim[1/(1/tg²(π*x/2)-1)]=2*1/(0-1)=-2.

3. Находим A=B+C=0+(-2)=-2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

К сожалению, я не вижу математического выражения или предела в вашем запросе. Если у вас есть конкретное выражение, для которого вы хотите найти предел, пожалуйста, предоставьте его, и я с радостью помогу вам с решением.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос