Вопрос задан 16.07.2023 в 11:36. Предмет Алгебра. Спрашивает Азимов Назим.

для покраски одной грани кубика требуется 10 с. За какое наименьшее время 6 человек могут покрасить

101 кубик ? ( два человека не могут одновременно красить один кубик )
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Федюнин Аттила.

Ответ:

101=6*16+5=95+5

16+1=17

Ответ: 17 с

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Если два человека не могут одновременно красить один кубик, то наименьшее время, за которое 6 человек могут покрасить 101 кубик, можно определить следующим образом:

Каждый кубик требует 10 секунд на покраску одной грани. Таким образом, на покраску одного кубика требуется 6 × 10 = 60 секунд.

Чтобы определить общее время на покраску 101 кубика, мы можем умножить время на покраску одного кубика на количество кубиков:

Общее время = время на покраску одного кубика × количество кубиков Общее время = 60 секунд × 101 кубик

Общее время = 6060 секунд.

Таким образом, наименьшее время, за которое 6 человек могут покрасить 101 кубик, составляет 6060 секунд или 101 минуту.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос