Вопрос задан 14.07.2023 в 09:45. Предмет Алгебра. Спрашивает Рачёва Аня.

3x^2 < 27 решить неравенство.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Останина Катя.

Ответ:

9<27

Объяснение:

 {3x}^{2}  = 9 \\ 9 < 27

0 0
Отвечает Новосельцева Саша.

Ответ:

х^2=27/3

х^2=9

х1=3

х2=-3

вот помогла??))❤❤❤

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the inequality 3x2<273x^2 < 27, we need to find the values of xx that satisfy the inequality. Here's the step-by-step solution:

Step 1: Subtract 27 from both sides of the inequality to isolate the quadratic term on the left side: 3x227<03x^2 - 27 < 0

Step 2: Divide both sides by 3 to simplify the inequality: x29<0x^2 - 9 < 0

Step 3: Factor the quadratic expression on the left side, if possible. In this case, it's already factored: (x+3)(x3)<0(x + 3)(x - 3) < 0

Step 4: Now, we need to find the critical points where the inequality might change its sign. Set each factor to zero and solve for xx: x+3=0andx3=0x + 3 = 0 \quad \text{and} \quad x - 3 = 0

Solving for xx: x=3andx=3x = -3 \quad \text{and} \quad x = 3

Step 5: Create an inequality sign chart or a number line. Mark the critical points found in step 4 (3-3 and 33), and choose a test value from each of the intervals created by these critical points and plug it into the inequality to determine the sign in that interval.

Test value x=4x = -4 (choose a value smaller than 3-3): (x+3)(x3)=(4+3)(43)=(1)(7)=7>0(x + 3)(x - 3) = (-4 + 3)(-4 - 3) = (-1)(-7) = 7 > 0

Test value x=0x = 0 (choose a value between 3-3 and 33): (x+3)(x3)=(0+3)(03)=(3)(3)=9<0(x + 3)(x - 3) = (0 + 3)(0 - 3) = (3)(-3) = -9 < 0

Test value x=4x = 4 (choose a value greater than 33): (x+3)(x3)=(4+3)(43)=(7)(1)=7>0(x + 3)(x - 3) = (4 + 3)(4 - 3) = (7)(1) = 7 > 0

Step 6: Analyze the signs in each interval. We want the expression (x+3)(x3)(x + 3)(x - 3) to be less than zero (00) because that's the condition for the inequality x29<0x^2 - 9 < 0.

  • For x<3x < -3, (x+3)(x + 3) is positive and (x3)(x - 3) is negative, so the product (x+3)(x3)(x + 3)(x - 3) is positive.
  • For 3<x<3-3 < x < 3, (x+3)(x + 3) is positive, and (x3)(x - 3) is also positive, so the product (x+3)(x3)(x + 3)(x - 3) is negative.
  • For x>3x > 3, (x+3)(x + 3) is positive, and (x3)(x - 3) is negative, so the product (x+3)(x3)(x + 3)(x - 3) is positive.

Step 7: Finalize the solution. The inequality x29<0x^2 - 9 < 0 is satisfied for values of xx between 3-3 and 33 (exclusive):

3<x<3-3 < x < 3

So, the solution to the inequality is xx belonging to the open interval (3,3)(-3, 3).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос