
0,5cos(2x)-cos(x)+2cos^3(x)=0


Ответы на вопрос

cos2x=2cos²x-1
0,5·(2cos²x-1)-cosx+2cos³x=0
cos²x-0,5-cosx+2cos³x=0
Раскладываем левую часть на множители способом группировки:
(2cos³x-cosx)+(cos²x-0,5)=0
2cosx·(cos²x-0,5)+(cos²x-0,5)=0
(cos²x-0,5)·(2cosx+1)=0
cos²x-0,5=0 или 2cosx+1=0
cos²x-0,5=0
cosx=±√2/2
cosx=√2/2 или cosx=-√2/2
x=(±π/4)+2πn или x=(±3π/4)++2πm, n,m∈Z
2cosx+1=0
cosx=-1/2
x=(±2π/3)+2πk, k∈Z
О т в е т. (±π/4)+2πn ; (±3π/4)++2πm ; (±2π/3)+2πk, n,m, k∈Z



To solve the trigonometric equation 0.5cos(2x) - cos(x) + 2cos^3(x) = 0, we'll first use some trigonometric identities to simplify it, and then find the solutions. Here's the step-by-step process:
Step 1: Use the double-angle identity for cosine. cos(2x) = 2cos^2(x) - 1
Step 2: Substitute the double-angle identity into the equation. 0.5(2cos^2(x) - 1) - cos(x) + 2cos^3(x) = 0
Step 3: Simplify the equation. cos^2(x) - cos(x) + 2cos^3(x) - 0.5 = 0
Step 4: Factor out common terms. cos^2(x) + 2cos^3(x) - cos(x) - 0.5 = 0
Step 5: Group the terms and factor by cos(x). cos(x)(cos^2(x) + 2cos^2(x) - 1) - 0.5 = 0
Step 6: Combine like terms. cos(x)(3cos^2(x) - 1) - 0.5 = 0
Now, we have a quadratic equation in terms of cos(x): 3cos^3(x) - cos(x) - 0.5 = 0
Let's solve this quadratic equation for cos(x). To do this, we can use the quadratic formula: For any quadratic equation of the form ax^2 + bx + c = 0, the solutions for x are given by: x = (-b ± √(b^2 - 4ac)) / 2a
In our case, a = 3, b = -1, and c = -0.5.
Step 7: Substitute the values into the quadratic formula. cos(x) = [1 ± √((-1)^2 - 4 * 3 * (-0.5))] / (2 * 3)
Step 8: Simplify under the square root. cos(x) = [1 ± √(1 + 6)] / 6 cos(x) = [1 ± √7] / 6
So the two possible solutions for cos(x) are:
- cos(x) = (1 + √7) / 6
- cos(x) = (1 - √7) / 6
Step 9: Find the values of x. To find the values of x, we need to use the inverse cosine function (arccosine). In general, for any real number "a," the solutions for x in cos(x) = a are given by: x = arccos(a) + 2πn or x = -arccos(a) + 2πn, where "n" is an integer.
Using this formula, we can find the values of x corresponding to the two solutions for cos(x) obtained above.
For cos(x) = (1 + √7) / 6: x = arccos((1 + √7) / 6) + 2πn or x = -arccos((1 + √7) / 6) + 2πn
And for cos(x) = (1 - √7) / 6: x = arccos((1 - √7) / 6) + 2πn or x = -arccos((1 - √7) / 6) + 2πn
Keep in mind that "n" can be any integer, as it represents the periodic nature of the trigonometric functions.
These are the solutions for the given trigonometric equation.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili