Вопрос задан 14.07.2023 в 05:28. Предмет Алгебра. Спрашивает Адамова Екатерина.

Y=-(x+2)^2-1построить,решение.​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Карпова Екатерина.

Ответ:

y = -x^2 -4x - 5

Объяснение:

1. у = -(x^2 + 4x + 4) -1

2. y = -x^2 -4x - 4 - 1

3. y = -x^2 -4x - 5

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To graph the equation Y=(x+2)21Y=-(x+2)^2-1, we'll start by understanding the key features of the equation. The given equation is a quadratic function in the form of Y=a(xh)2+kY=a(x-h)^2+k, where (h,k)(h,k) represents the vertex of the parabola. In this case, h=2h=-2 and k=1k=-1.

Here's the step-by-step process to graph the equation:

Step 1: Determine the vertex The vertex of the parabola is at the point (h,k)(-h,k), which in this case is ((2),1)=(2,1)(-(-2), -1) = (2, -1).

Step 2: Find the y-intercept The y-intercept is the value of YY when x=0x=0. Let's plug x=0x=0 into the equation: Y=((0+2)2)1=(22)1=(4)1=5Y = -((0+2)^2)-1 = -(2^2)-1 = -(4)-1 = -5 So, the y-intercept is (0,5)(0, -5).

Step 3: Find the x-intercept(s) The x-intercept(s) are the values of xx when Y=0Y=0. Let's set YY to zero and solve for xx: 0=((x+2)2)10 = -((x+2)^2)-1 (x+2)2=1(x+2)^2 = -1

Since a squared term cannot be negative, there are no real solutions for this equation. This means the parabola does not intersect the x-axis.

Step 4: Determine the axis of symmetry The axis of symmetry is a vertical line that passes through the vertex and divides the parabola into two symmetrical halves. It is given by x=hx=h, which in this case is x=2x=-2.

Step 5: Plot the points and sketch the parabola Using the information we gathered in the previous steps, we can now plot the points and sketch the parabola on the coordinate plane:

  • Vertex: (2,1)(2, -1)
  • Y-intercept: (0,5)(0, -5)
  • Axis of Symmetry: x=2x = -2

Now, we can sketch the parabola. Since the coefficient of x2x^2 is negative, the parabola opens downward.

The graph of the equation Y=(x+2)21Y=-(x+2)^2-1 will look like this:

lua
| | | | | . (2, -1) <-- Vertex | | ----------+----------------- | | | . (0, -5) <-- Y-intercept | |

Please note that the parabola will continue indefinitely in both directions, but we only drew a portion of it for illustration purposes.

Keep in mind that graphing software or graphing calculators can help you visualize the graph more accurately and efficiently.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос