Вопрос задан 12.07.2023 в 12:12. Предмет Алгебра. Спрашивает Аббасов Александр.

Знайти критичніточки функціїy = -x - 2x - 2x+4​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Карчёв Илья.

Ответ:

oY(0; 4), oX(0.8, 0)

Пояснение: oY = (y=kx + b)

              oX = -(b/k)  

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Спростимо задану функцію, щоб знайти критичні точки. Передусім, зрозуміємо правильний вираз для даної функції, оскільки поточний варіант, який ви надали, може містити помилку.

Зауваження: Ви маєте вказати, яка функція задана. Поки що я припустив, що функція має вигляд y = -x - 2x - 2x + 4.

Передбачу, що ви мали на увазі функцію y = -x - 2x - 2x + 4 = -5x + 4.

Тепер, щоб знайти критичні точки, потрібно знайти похідну функції та зрівняти її з нулем, оскільки критичні точки відповідають значенням аргументу, де похідна дорівнює нулю.

  1. Знаходження похідної функції:

y = -5x + 4.

Для знаходження похідної скористаємося правилом диференціювання степеневої функції: (d/dx) x^n = n * x^(n-1).

Таким чином, диференціюємо функцію y = -5x + 4 за x: dy/dx = d/dx (-5x) + d/dx (4) = -5 * d/dx (x) + 0 = -5.

  1. Знаходження критичних точок:

Тепер зрівнюємо похідну з нулем, щоб знайти значення x, де похідна дорівнює нулю: dy/dx = -5 = 0.

З даним рівнянням не можна знайти розв'язок, оскільки -5 не дорівнює 0. Це означає, що функція y = -5x + 4 не має критичних точок, оскільки вона є прямою зі сталим нахилом -5.

Зверніть увагу, що можливо, ви хотіли задати іншу функцію, і в такому разі необхідно було б змінити початкове рівняння.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос