
Cos^2a-4sin^2a/2 cos^2a/2 /1-8sin^2a/2cos2a/2=1


Ответы на вопрос

Ответ:
вот это фото ☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️




It looks like you've provided an expression involving trigonometric functions and are asking to simplify it to 1. Let's break down the expression step by step and simplify it:
Expression: (cos^2(a) - 4sin^2(a)) / (2cos^2(a/2)) / (1 - 8sin^2(a/2)cos(a/2))
Step 1: We'll start by simplifying the numerator and denominator separately.
Numerator: cos^2(a) - 4sin^2(a) Using the trigonometric identity: cos^2(a) - sin^2(a) = cos(2a) cos(2a)
Denominator: 2cos^2(a/2) Using the half-angle formula: cos^2(a/2) = (1 + cos(a)) / 2 2 * (1 + cos(a)) / 2 1 + cos(a)
1 - 8sin^2(a/2)cos(a/2) Using the double-angle formula: sin(2a) = 2sin(a)cos(a) 8sin(a/2)cos(a/2) 4 * 2sin(a/2)cos(a/2) 4sin(a)
Step 2: Substitute the simplified numerator and denominators back into the expression:
(cos(2a)) / (1 + cos(a)) / (1 - 4sin(a))
Step 3: Combine the fractions by multiplying the first fraction by the reciprocal of the second fraction:
(cos(2a)) * (1 - 4sin(a)) / (1 + cos(a))
Step 4: Distribute cos(2a) through the numerator:
cos(2a) - 4sin(a)cos(2a) / (1 + cos(a))
Step 5: Apply the double-angle formula for cosine: cos(2a) = 2cos^2(a) - 1
(2cos^2(a) - 1) - 4sin(a)(2cos^2(a) - 1) / (1 + cos(a))
Step 6: Distribute and simplify further:
2cos^2(a) - 1 - 8sin(a)cos^2(a) + 4sin(a) / (1 + cos(a))
Step 7: Factor out common terms in the numerator:
(2cos^2(a) - 8sin(a)cos^2(a)) - 1 + 4sin(a) / (1 + cos(a))
Step 8: Combine like terms:
2cos^2(a) - 8sin(a)cos^2(a) + 4sin(a) - 1 / (1 + cos(a))
Step 9: Factor out common terms again:
2cos^2(a) * (1 - 4sin(a)) + 4sin(a) - 1 / (1 + cos(a))
Step 10: Substitute the double-angle formula for cosine: cos(2a) = 2cos^2(a) - 1
2 * cos(2a) * (1 - 4sin(a)) + 4sin(a) - 1 / (1 + cos(a))
Step 11: Distribute and simplify:
2cos(2a) - 8sin(a)cos(2a) + 4sin(a) - 1 / (1 + cos(a))
Step 12: Combine terms again:
2cos(2a) - 8sin(a)cos(2a) + 4sin(a) - 1 = (1 + cos(a))
The final simplified expression is 1 + cos(a), which is not equal to 1. Therefore, it appears there may have been a mistake or typo in the original expression or calculation. Please double-check the expression or provide additional information if necessary.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili