Вопрос задан 11.07.2023 в 09:40. Предмет Алгебра. Спрашивает Горбач Валерия.

Укажите значения переменной, при которых не имеет смысла выражение. Помогите пожалуйста х/х-2=

b+4/b(во 2 степени)+7= у(2степени)-1/у+у/у-3
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Амвросов Глеб.

Ответ:

Выражение не имеет смысла, если знаменатель дроби равен нулю. Деление на 0 не имеет смысла, не определено.

1) В выражении

\displaystyle \tt \frac{x}{x-2}

знаменатель равен х-2. По требованию х-2≠0 или х≠2.

Ответ: х≠2.

2) В выражении

\displaystyle \tt \frac{b+4}{b^2+7}

знаменатель равен b²+7≥7>0. То есть знаменатель никогда не равняется 0.  

Ответ: нет такого значения.

3) В выражении

\displaystyle \tt \frac{y^2-1}{y} +\frac{y}{y-3}

2 дроби и поэтому знаменатели равны y и y-3. По требованию y≠0 и y-3≠0. Тогда: y≠0 и y≠3.

Ответ: y≠0, y≠3.

0 0
Отвечает Коряшкин Максим.

Выражение не имеет смысла, если под дробью значение будет равно 0. На ноль делить нельзя.

х-2=0

х=2 - при этом значении выражение х/(х-2) не имеет смысла.

.

\displaystyle\frac{b+4}{b^{2} +7}

b²+7=0

b²= - 7 - таких значений нет.

b²+7 > 0 - всегда положительно.

.

\displaystyle\frac{y^{2} -1}{y} +\frac{y}{y-3}

Выражение не имеет смысла при

у₁=0

у-3=0

у₂=3

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для определения значений переменной, при которых выражение не имеет смысла, нужно найти значения переменной, при которых знаменатели в выражении становятся равными нулю.

  1. Рассмотрим первое уравнение: х/(х-2) = b + 4/b^2 + 7.

    Знаменатель (х-2) не может быть равен нулю, так как деление на ноль не определено. Значит, х ≠ 2.

  2. Рассмотрим второе уравнение: b^2 + 7 ≠ 0.

    Квадратное уравнение b^2 + 7 = 0 не имеет решений в действительных числах, так как b^2 всегда неотрицательно, а 7 положительно. Значит, выражение имеет смысл для любого значения b.

  3. Рассмотрим третье уравнение: у^2 - 1 ≠ 0 и у - 3 ≠ 0.

    Выражение у^2 - 1 ≠ 0 имеет решения для любого значения у, кроме у = 1 и у = -1.

    Знаменатель (у - 3) не может быть равен нулю, так как деление на ноль не определено. Значит, у ≠ 3.

Итак, значения переменной, при которых выражение не имеет смысла, это:

х ≠ 2, у ≠ 3, у ≠ 1, у ≠ -1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос