Вопрос задан 10.07.2023 в 11:42. Предмет Алгебра. Спрашивает Кудревич Лера.

При яких значеннях рівняння 2x ²+ bx + 8=0 має єдиний корінь​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тверской Влад.

Ответ:

дискриминант - б²-4ас=б²-4•2•8= б²-64.

один корень если дискриминант нулевой

значит, б²=64

б=±8

0 0
Отвечает Суржан Артур.

Ответ:

Фото

Объяснение:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того щоб квадратне рівняння мало єдиний корінь, дискримінант цього рівняння повинен бути рівний нулю. Дискримінант обчислюється за формулою:

Дискримінант (D) = b² - 4ac,

де a, b і c - коефіцієнти квадратного рівняння ax² + bx + c = 0.

В вашому випадку, маємо рівняння 2x² + bx + 8 = 0, тому a = 2, b = b і c = 8. Підставимо ці значення в формулу для дискримінанту:

D = b² - 4ac = b² - 4 * 2 * 8 = b² - 64.

Якщо має бути єдиний корінь, то дискримінант повинен бути рівний нулю:

b² - 64 = 0.

Звідси маємо:

b² = 64,

b = ±√64,

b = ±8.

Таким чином, при значеннях b = 8 або b = -8 рівняння 2x² + bx + 8 = 0 матиме єдиний корінь.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос