Вопрос задан 07.07.2023 в 15:20. Предмет Алгебра. Спрашивает Волков Паша.

Розклади на линийни множныки квадратный тричлен ​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Руина Дашка.

Решение на фотографии!!!!!!!!!!!!


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Лінійний множник для квадратного тричлена має вигляд (x - r), де "r" - це корінь (розв'язок) квадратного тричлена. Квадратний тричлен має загальний вигляд: ax^2 + bx + c = 0, де "a", "b" і "c" - це коефіцієнти. Щоб знайти розклад на лінійні множники, ми повинні знайти корені цього квадратного тричлена. Тобто, знайти значення "x", для якого ax^2 + bx + c = 0.

Давайте припустимо, що ми маємо квадратний тричлен такого вигляду: ax^2 + bx + c = 0, і ми хочемо знайти його розклад на лінійні множники. Спочатку знайдемо корені цього тричлена, вирішивши рівняння ax^2 + bx + c = 0.

  1. Розв'язок квадратного рівняння: ax^2 + bx + c = 0.
  2. Знайдені корені будуть різними значеннями "x", які представляють лінійні множники (x - r1) та (x - r2), де r1 і r2 - це корені рівняння.

Таким чином, розклад квадратного тричлена на лінійні множники буде виглядати як: (x - r1)(x - r2), де r1 та r2 - це корені квадратного тричлена ax^2 + bx + c = 0.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос