 
скільки різних трицифрових чисел, у запису яких є тільки непарні цифри, можна скласти, якщо цифри в
числі не повторюються 0
        0
         0
        0
    Ответы на вопрос
 
        Відповідь:
60 МОЖЛИВИХ РОЗМІЩЕНЬ!
Роз'яснення:
1) Всього непарних чисел є п'ять: 1, 3, 5, 7, 9. Питається: скільки трицифрових чисел можна скласти із цих 5 непарних чисел? При цьому числа повинні не повторюватись. Останнє означає, що числа, до прикладу, 555, 551, 551, 115, 177, 133 і т.д. - неможливі, адже в них повторюються 5, 1, 7 і 3 два чи більше разів! До речі, якщо треба скласти трицифрові числа із 5 непарних, тоді і самі трицифрові числа будуть непарними, адже парних немає!
2) Означення розміщення таке: "Кожна впорядкована підмножина, яка містить k елементів даної множини з n елементів, називається розміщенням (accommodation) із n по k елементів. Таким чином, два різних розміщення із даних n елементів по k відрізняються один від одного або складом елементів, або порядком їх розміщення." Такі комбінації чисел нам підходять!
Всього n елементів в нас 5 - це непарні числа; а k елементів, які ми хочемо скласти із 5 непарних чисел, тобто з n, є 3; для прикладу візьмемо довільні два числа, нехай це будуть 135 і 153. - 135 відрізняється від 153 лише порядком розміщення, ми "перетасували" десятки і одиниці. Чи можемо ми вважати такі числа розміщенням із n елементів, тобто з п'яти непарних чисел, по k елементів, тобто із будь-яких трьох чисел, складених із n непарних чисел? - Так, виходячи з означення. Ба більше, числа 135 і 137 - це також одні із сполук розміщення, і вони також будуть враховуватися (виходячи з означення, адже вони відрізняються складом елементів).
Тобто нас просять знайти всі такі трицифрові числа, в яких будуть, по-перше, лише непарні числа (їх 5); по-друге, числа (непарні), які не повторюються (111 чи 117 - не підходять!); і по-третє, числа, склад елементів яких різний (153 чи 159 - "Всьо пучком"). АЛЕ ВСІ ЦІ ЦИФРИ ПОВИННІ БУТИ НЕПАРНИМИ! (їх п'ять, до речі)
3) Таку махінацію можна було б проробити на листочку, що я Вам і рекомендую, щоб переконатися, що формула не бреше. Але ми нею і скористаємося, а для підтвердження її правильності, я додам малюнок із цими розміщеннями.
4) Отож, число розміщень із n елементів по k позначається символом  (arrangement (франц.) - розміщення). Число всіх можливих розміщень із n елементів по k дорівнює добутку k послідовних чисел, з яких найбільшим є n, тобто: 
 (1). Цією формулою варто користуватися при числових розрахункам, що нам і підійде, але зазвичай просять запам'ятати іншу. Виведемо її, поділивши нашу 1 формулу на 
 маємо: 
 (2). 
5) Скористаємося першою формулою, пам'ятаючи, що n = 5 (усі непарні числа), а m = 3 (непарні трицифрові числа із 5 непарних): . Тобто всього чисел, які складені з 5 непарних чисел 1, 3, 5, 7, 9, але водночас які є трицифровими - рівно 60.

 0
                    0
                     0
                    0
                 
            Для того чтобы підрахувати кількість різних трицифрових чисел, у запису яких є тільки непарні цифри і цифри не повторюються, спробуємо розглянути можливі варіанти для кожної позиції в числі:
- Перша цифра: Є 5 можливих непарних цифр для першої позиції: 1, 3, 5, 7, 9. 
- Друга цифра: Після вибору першої цифри залишається 4 непарних цифри для другої позиції. 
- Третя цифра: Після вибору перших двох цифр залишається 3 непарних цифри для третьої позиції. 
Загалом кількість можливих чисел буде дорівнювати добутку кількостей можливих цифр на кожній позиції:
5 (перша цифра) × 4 (друга цифра) × 3 (третя цифра) = 60.
Отже, можна скласти 60 різних трицифрових чисел, у запису яких є тільки непарні цифри і цифри не повторюються.
 0
                    0
                     0
                    0
                Похожие вопросы
 
			Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			