
скільки різних трицифрових чисел, у запису яких є тільки непарні цифри, можна скласти, якщо цифри в
числі не повторюються

Ответы на вопрос

Відповідь:
60 МОЖЛИВИХ РОЗМІЩЕНЬ!
Роз'яснення:
1) Всього непарних чисел є п'ять: 1, 3, 5, 7, 9. Питається: скільки трицифрових чисел можна скласти із цих 5 непарних чисел? При цьому числа повинні не повторюватись. Останнє означає, що числа, до прикладу, 555, 551, 551, 115, 177, 133 і т.д. - неможливі, адже в них повторюються 5, 1, 7 і 3 два чи більше разів! До речі, якщо треба скласти трицифрові числа із 5 непарних, тоді і самі трицифрові числа будуть непарними, адже парних немає!
2) Означення розміщення таке: "Кожна впорядкована підмножина, яка містить k елементів даної множини з n елементів, називається розміщенням (accommodation) із n по k елементів. Таким чином, два різних розміщення із даних n елементів по k відрізняються один від одного або складом елементів, або порядком їх розміщення." Такі комбінації чисел нам підходять!
Всього n елементів в нас 5 - це непарні числа; а k елементів, які ми хочемо скласти із 5 непарних чисел, тобто з n, є 3; для прикладу візьмемо довільні два числа, нехай це будуть 135 і 153. - 135 відрізняється від 153 лише порядком розміщення, ми "перетасували" десятки і одиниці. Чи можемо ми вважати такі числа розміщенням із n елементів, тобто з п'яти непарних чисел, по k елементів, тобто із будь-яких трьох чисел, складених із n непарних чисел? - Так, виходячи з означення. Ба більше, числа 135 і 137 - це також одні із сполук розміщення, і вони також будуть враховуватися (виходячи з означення, адже вони відрізняються складом елементів).
Тобто нас просять знайти всі такі трицифрові числа, в яких будуть, по-перше, лише непарні числа (їх 5); по-друге, числа (непарні), які не повторюються (111 чи 117 - не підходять!); і по-третє, числа, склад елементів яких різний (153 чи 159 - "Всьо пучком"). АЛЕ ВСІ ЦІ ЦИФРИ ПОВИННІ БУТИ НЕПАРНИМИ! (їх п'ять, до речі)
3) Таку махінацію можна було б проробити на листочку, що я Вам і рекомендую, щоб переконатися, що формула не бреше. Але ми нею і скористаємося, а для підтвердження її правильності, я додам малюнок із цими розміщеннями.
4) Отож, число розміщень із n елементів по k позначається символом (arrangement (франц.) - розміщення). Число всіх можливих розміщень із n елементів по k дорівнює добутку k послідовних чисел, з яких найбільшим є n, тобто:
(1). Цією формулою варто користуватися при числових розрахункам, що нам і підійде, але зазвичай просять запам'ятати іншу. Виведемо її, поділивши нашу 1 формулу на
маємо:
(2).
5) Скористаємося першою формулою, пам'ятаючи, що n = 5 (усі непарні числа), а m = 3 (непарні трицифрові числа із 5 непарних): . Тобто всього чисел, які складені з 5 непарних чисел 1, 3, 5, 7, 9, але водночас які є трицифровими - рівно 60.




Для того чтобы підрахувати кількість різних трицифрових чисел, у запису яких є тільки непарні цифри і цифри не повторюються, спробуємо розглянути можливі варіанти для кожної позиції в числі:
Перша цифра: Є 5 можливих непарних цифр для першої позиції: 1, 3, 5, 7, 9.
Друга цифра: Після вибору першої цифри залишається 4 непарних цифри для другої позиції.
Третя цифра: Після вибору перших двох цифр залишається 3 непарних цифри для третьої позиції.
Загалом кількість можливих чисел буде дорівнювати добутку кількостей можливих цифр на кожній позиції:
5 (перша цифра) × 4 (друга цифра) × 3 (третя цифра) = 60.
Отже, можна скласти 60 різних трицифрових чисел, у запису яких є тільки непарні цифри і цифри не повторюються.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili