
Найдите уравнение касательной к графику функции f (x) = 3x²- x³ в точке с абсциссой x0 = -2
Помогите пожалуйста решить

Ответы на вопрос

Ответ:y=-24x-44
Объяснение:Сперва находим производную от данной функции.
x0 = -2
Формула касательной к функции f(x):
y=f’(x0)(x-x0) +f(x)




Чтобы найти уравнение касательной к графику функции f(x) = 3x² - x³ в точке с абсциссой x0 = -2, следуйте следующим шагам:
Найдите производную функции f(x): f(x) = 3x² - x³ f'(x) = d/dx (3x² - x³) = 6x - 3x²
Вычислите значение производной в точке x0 = -2: f'(-2) = 6(-2) - 3(-2)² = -12 - 12 = -24
Найдите значение функции в точке x0 = -2: f(-2) = 3(-2)² - (-2)³ = 12 - (-8) = 20
Теперь мы имеем точку (-2, 20) и угловой коэффициент касательной (производную) m = -24.
Уравнение касательной имеет вид y - y₀ = m(x - x₀), где (x₀, y₀) - точка касания, m - угловой коэффициент.
Подставьте значения и решите уравнение для y: y - 20 = -24(x - (-2)) y - 20 = -24x - 48 y = -24x + 20 - 48 y = -24x - 28
Итак, уравнение касательной к графику функции f(x) = 3x² - x³ в точке с абсциссой x0 = -2 равно y = -24x - 28.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili