Вопрос задан 06.07.2023 в 22:19. Предмет Алгебра. Спрашивает Костырин Андрей.

{ 2x + 5y = 15 3x + 8y = −1

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Новиков Вадим.

Ответ:

x = 125

y = -47

Объяснение:

2x + 5y = 15

3x + 8y = −1

Умножим 1-ое уравнение на 3, а 2-ое на -2

6x + 15y = 45

-6x - 16y = 2

сложим

-y = 47

y = -47

x = (15 - 5y)/2 = (15 + 235)/2 = 125

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

It looks like you've provided a system of two linear equations with two variables, x and y. This system can be solved to find the values of x and y that satisfy both equations. There are various methods to solve such systems, such as substitution, elimination, or using matrices.

Let's solve this system using the elimination method:

Given the system of equations:

  1. 2x+5y=152x + 5y = 15
  2. 3x+8y=13x + 8y = -1

We can start by multiplying both sides of equation 1 by 3 and equation 2 by 2 to make the coefficients of x in both equations equal:

3 * 2x+5y=152x + 5y = 15 => 6x+15y=456x + 15y = 45 2 * 3x+8y=13x + 8y = -1 => 6x+16y=26x + 16y = -2

Now, subtract the modified equation 2 from the modified equation 1 to eliminate x:

(6x+15y)(6x+16y)=45(2)(6x + 15y) - (6x + 16y) = 45 - (-2) y=47-y = 47

Dividing both sides by -1: y=47y = -47

Now that we have the value of y, we can substitute it back into one of the original equations to solve for x. Let's use equation 1:

2x+5(47)=152x + 5(-47) = 15 2x235=152x - 235 = 15 2x=2502x = 250 x=125x = 125

So, the solution to the system of equations is x=125x = 125 and y=47y = -47.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос