
2 sin квадрат x-cos x=1


Ответы на вопрос

Ответ:
0
0

The equation you provided is:
We can solve this equation for . First, let's rearrange the equation to isolate the trigonometric terms on one side:
Now, we need to use trigonometric identities to simplify the equation. We'll use the Pythagorean identity for sine and cosine:
Rearranging this identity, we get:
Now we can substitute this into our equation:
Simplify this equation:
Rearrange and combine terms:
Divide the entire equation by -1 to make the leading coefficient of the quadratic term positive:
Now, this is a quadratic equation in terms of . We can solve it by factoring or using the quadratic formula:
Let , then the equation becomes:
We can factor this equation:
This gives us two possible values for :
- -->
- -->
Now, remember that , so:
We can solve these equations for :
For , there are two solutions: and , where is an integer.
For , there is one solution: , where is an integer.
So, the solutions for the original equation are:
where is an integer.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili