Вопрос задан 06.07.2023 в 04:48. Предмет Алгебра. Спрашивает Kanat Akmaral.

Докажите ,что при всех натуральных значениях n значение выражения n^3-43n кратно 6

Доказательство: пусть t= остаток n при деление на 6,т.е. n=6k+t или n^3-43n=(6k+t)^3-43(6k+t)= ... Если t=1 To t^3-43t=... Если t=2 то t^3-43t=... Если t=3 To t^3-43t=... Если t=4 To t^3-43t=... Если t=5 To t^3-43t=...
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Перепечаенко Анюта.

Ответ:

Объяснение: пусть t= остаток n при деление на 6,т.е. n=6k+t или n^3-43n=(6k+t)^3-43(6k+t)=6(36k^3+18k^2+3kt^2-43k)+t^3-43t

Если t=1 To t^3-43t=-42

Если t=2 то t^3-43t=-78

Если t=3 To t^3-43t=-102

Если t=4 To t^3-43t=-108

Если t=5 To t^3-43t=-90

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для данного доказательства мы можем рассмотреть каждый возможный остаток t при делении n на 6.

  1. Пусть t = 0. Тогда n = 6k + 0 = 6k, и значение выражения n^3 - 43n равно:

    n^3 - 43n = (6k)^3 - 43(6k) = 216k^3 - 258k = 6(36k^3 - 43k).

    Заметим, что выражение 36k^3 - 43k будет кратно 6, так как каждое слагаемое кратно 6. Таким образом, при t = 0 выражение n^3 - 43n также кратно 6.

  2. Пусть t = 1. Тогда n = 6k + 1, и значение выражения n^3 - 43n равно:

    n^3 - 43n = (6k + 1)^3 - 43(6k + 1).

    Давайте разложим (6k + 1)^3 и посмотрим на остаток при делении на 6:

    (6k + 1)^3 = 216k^3 + 108k^2 + 18k + 1 = 6(36k^3 + 18k^2 + 3k) + 1.

    Таким образом, n^3 - 43n = 6(36k^3 + 18k^2 + 3k) + 1 - 43(6k + 1) = 6(36k^3 + 18k^2 - 40k - 42) + 1.

    Первое слагаемое в скобках кратно 6, поэтому n^3 - 43n не кратно 6 при t = 1.

  3. Аналогично, при проверке всех остатков t = 2, 3, 4 и 5, вы убедитесь, что n^3 - 43n не кратно 6.

Итак, мы видим, что выражение n^3 - 43n кратно 6 только при t = 0 (или n = 6k). Таким образом, мы доказали, что при всех натуральных значениях n выражение n^3 - 43n кратно 6.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос