Вопрос задан 02.07.2023 в 08:56. Предмет Алгебра. Спрашивает Павлович Дмитрий.

2y-5x=≥3x 2x+y≤6 y+3≥0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Селиванова Анастасия.

Ответ:

у=-

 \frac{1}{3}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

It looks like you've provided a system of linear inequalities with three equations involving the variables x and y. To solve this system, we'll need to find the values of x and y that satisfy all three inequalities simultaneously. Let's work through each inequality step by step:

  1. 2y5x3x2y - 5x \geq 3x
  2. 2x+y62x + y \leq 6
  3. y+30y + 3 \geq 0

Let's start by solving the third inequality:

y+30y + 3 \geq 0
Subtract 3 from both sides:
y3y \geq -3

This means that any value of y that is greater than or equal to -3 will satisfy this inequality.

Next, let's solve the second inequality:

2x+y62x + y \leq 6
Subtract 2x2x from both sides:
y62xy \leq 6 - 2x

This gives us a boundary for y in terms of x. Now, let's combine this with the first inequality:

2y5x3x2y - 5x \geq 3x
Add 5x5x to both sides:
2y8x2y \geq 8x
Divide by 2:
y4xy \geq 4x

So, for the first inequality, any value of y that is greater than or equal to 4x will satisfy it.

Now we have boundaries for y in terms of x from the second and third inequalities, and we want to find the values of x and y that satisfy all three inequalities. Combining the inequalities:

  1. y4xy \geq 4x
  2. y62xy \leq 6 - 2x
  3. y3y \geq -3

From these inequalities, we can deduce that the common region where all three inequalities are satisfied lies where the conditions overlap:

  1. y4xy \geq 4x (Region above the line)
  2. y62xy \leq 6 - 2x (Region below the line)
  3. y3y \geq -3 (Region above the line)

Graphically, if you were to plot these inequalities on a graph, the overlapping region of the shaded areas would be the solution to the system of inequalities.

Keep in mind that the solution to this system of inequalities is not a single point, but rather a region in the coordinate plane where all three conditions are met.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос